Featured Research

from universities, journals, and other organizations

Two non-coding RNAs trigger formation of a nuclear subcompartment

Date:
December 19, 2010
Source:
Cold Spring Harbor Laboratory
Summary:
The nucleus of a cell, which houses the cell's DNA, is also home to many structures that are not bound by a membrane but nevertheless exist as distinct compartments. Scientists have discovered that the formation of one of these nuclear subcompartments, called paraspeckles, is triggered by a pair of RNA molecules, which also maintain its structural integrity.

The nucleus of a cell, which houses the cell's DNA, is also home to many structures that are not bound by a membrane but nevertheless exist as distinct compartments. A team of Cold Spring Harbor Laboratory (CSHL) scientists has discovered that the formation of one of these nuclear subcompartments, called paraspeckles, is triggered by a pair of RNA molecules, which also maintain its structural integrity.

As reported in a study published online ahead of print on December 19 in Nature Cell Biology, the scientists discovered this unique structure-building role for the RNAs by keeping a close watch on them from the moment they come into existence within a cell's nucleus. The scientists' visual surveillance revealed that when the genes for these RNAs are switched on, and the RNAs are made, they recruit other RNA and protein components and serve as a scaffolding platform upon which these components assemble to form paraspeckles.

The two RNAs described in the study, named MENε and MENβ, are "non-coding" RNAs -- a type of RNA that does not serve as a code or template for the synthesis of cellular proteins. The genes that give rise to these non-coding RNAs are now thought to make up most of the human genome, in contrast to the genes that produce protein-coding RNAs, which account for approximately 2% of the human genome.

"We've known for several years that much of the other 98% of the genome doesn't encode for useless RNA," explains CSHL's Professor David L. Spector, who led the current study. "Various types of non-coding RNAs have been found that regulate the activity of protein-coding genes and cellular physiology in different ways. Our results reveal a new and intriguing function for a non-coding RNA -- the ability to trigger the assembly and maintenance of a nuclear body."

The nuclear bodies in question -- the paraspeckles -- are believed to serve as nuclear storage depots for RNAs that are ready to be coded, or translated, into proteins but are retained in the cell nucleus. Paraspeckles are thought to release this RNA cache into the cell's cytoplasm -- the site of protein synthesis -- under certain physiological conditions, such as cellular stress. Spector estimates that storing pre-made protein-coding RNA within the paraspeckles and releasing them as needed allows the cell to respond faster than if it had to make the RNA from scratch.

Previous experiments by Spector's team and two other groups indicated that MENε and MENβ RNAs were the critical elements for paraspeckle formation. "What wasn't clear was how the paraspeckles actually form and the dynamics of how the non-coding MEN RNAs help organize and maintain its structure," says Spector.

To address this question, the team developed an innovative approach -- spearheaded by CSHL postdoctoral fellow Yuntao (Steve) Mao and graduate student Hongjae Sunwoo -- to peer into living cells and capture the real-time dynamics of the interactions among the set of molecules known to be involved in paraspeckle formation. The scientists engineered cells in which each of these players -- the MENε/β genes, the newly formed MEN RNAs, and the various paraspeckle protein components -- each carried a different colored fluorescent tag. The cells were also genetically manipulated such that the MEN genes could be switched on by exposing the cells to a drug.

The resulting movies shot by the Spector team, showed that within five minutes of switching on the MENε/β gene, individual paraspeckle proteins arrived and assembled at the sites of MEN RNA transcription. As the RNA transcripts accumulated, the fully functional paraspeckles enlarged in tandem and eventually broke away to cluster around the transcription sites.

"Our experiments show that it is the act of MEN RNA transcription alone that triggers paraspeckle formation and sustains them," says Spector. In the absence of transcriptional activity -- such as during cell division or when the scientists added drugs that block RNA transcription or specifically switched off the MEN genes -- the newly formed paraspeckles fell apart.

This dependency on RNA transcription seems to be unique, as other nuclear compartments such as Cajal bodies can form when one of their components is simply tethered to a site on the genome, which in turn causes other components to coalesce around it. In contrast, says Spector, "Paraspeckles seem to follow a different assembly model in which MEN non-coding RNAs serve as seeding molecules that are driven by transcription to recruit the other components."

This work was supported by grants from the National Institute of General Medical Sciences, one of the National Institutes of Health.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yuntao S. Mao, Hongjae Sunwoo, Bin Zhang, David L. Spector. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nature Cell Biology, 2010; DOI: 10.1038/ncb2140

Cite This Page:

Cold Spring Harbor Laboratory. "Two non-coding RNAs trigger formation of a nuclear subcompartment." ScienceDaily. ScienceDaily, 19 December 2010. <www.sciencedaily.com/releases/2010/12/101219140819.htm>.
Cold Spring Harbor Laboratory. (2010, December 19). Two non-coding RNAs trigger formation of a nuclear subcompartment. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2010/12/101219140819.htm
Cold Spring Harbor Laboratory. "Two non-coding RNAs trigger formation of a nuclear subcompartment." ScienceDaily. www.sciencedaily.com/releases/2010/12/101219140819.htm (accessed August 2, 2014).

Share This




More Plants & Animals News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pyrenees Orphan Bear Cub Gets Brand New Home

Pyrenees Orphan Bear Cub Gets Brand New Home

AFP (Aug. 1, 2014) The discovery of a bear cub in the Pyrenees mountains made headlines in April 2014. Despire several attempts to find the animal's mother, the cub remained alone. Now, the Pyrenees Conservation Foundation has constructed an enclosure. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Ebola Vaccine Might Be Coming, But Where's It Been?

Ebola Vaccine Might Be Coming, But Where's It Been?

Newsy (Aug. 1, 2014) Health officials are working to fast-track a vaccine — the West-African Ebola outbreak has killed more than 700. But why didn't we already have one? Video provided by Newsy
Powered by NewsLook.com
Study Links Certain Birth Control Pills To Breast Cancer

Study Links Certain Birth Control Pills To Breast Cancer

Newsy (Aug. 1, 2014) Previous studies have made the link between birth control and breast cancer, but the latest makes the link to high-estrogen oral contraceptives. Video provided by Newsy
Powered by NewsLook.com
Rare Whale Fossil Pulled from Calif. Backyard

Rare Whale Fossil Pulled from Calif. Backyard

AP (Aug. 1, 2014) A rare whale fossil has been pulled from a Southern California backyard. The 16- to 17-million-year-old baleen whale fossil is one of about 20 baleen whale fossils known to exist. (Aug. 1) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins