Featured Research

from universities, journals, and other organizations

How the immune system fights back against anthrax infections

Date:
June 17, 2011
Source:
University of California - San Diego
Summary:
Scientists have uncovered how the body's immune system launches its survival response to the notorious and deadly bacterium anthrax. The findings describe key emergency signals the body sends out when challenged by a life-threatening infection.

A false-colored yellow neutrophil, one of several types of white blood cells that comprise the body's immune system, engulfs anthrax bacteria (orange).
Credit: Volker Brinkmann / Wikimedia Commons, Creative Commons Attribution 2.5 Generic license -- originally from "Neutrophil engulfing Bacillus anthracis". PLoS Pathogens. 2005; 1 (3): Cover page

Scientists at the University of California, San Diego School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences have uncovered how the body's immune system launches its survival response to the notorious and deadly bacterium anthrax. The findings, reported online June 16 and published in the June 22 issue of the journal Immunity, describe key emergency signals the body sends out when challenged by a life-threatening infection.

Related Articles


Exposure to anthrax often proves deadly. The anthrax bacterium can invade immune cells called macrophages and release potent toxins that paralyze key biochemical pathways, causing rapid cell death. Unchecked, the process may completely collapse the body's immune defenses, allowing the bacteria to proliferate, and ultimately lead to septic shock and high mortality.

The researchers discovered that the fight against invading anthrax bacteria begins with the first infected cell. They found that initially impacted macrophages immediately communicate with other immune cells to sound the alarm and develop a survival strategy. Remarkably, the key signaling molecule involved in the survival response is adenosine triphosphate or ATP, a basic currency of energy transfer used by all organisms.

"The warning alarm sounded during anthrax infection is elegant, complex and can be effective in slowing spread of the pathogen," said Michael Karin, PhD, distinguished professor of pharmacology and senior author of the study.

Karin explained that ATP is released from macrophages infected and poisoned with anthrax toxins through a special channel in the cell membrane. This ATP is then sensed by a receptor on a second macrophage, which assembles and activates a complex of molecules known as the inflammasome. The inflammasome then releases into the bloodstream an immune-activating molecule known as interleukin-1beta (IL-1beta), which alerts macrophages throughout the body to mobilize and increase their resistance to anthrax-induced cell death.

Researchers confirmed the importance of this complex signal transduction pathway in fighting anthrax in a series of experiments using genetically altered mice or inhibitor drugs. Whenever the researchers interfered with the ATP channel, the ATP receptor, inflammasome proteins or the IL-1beta molecule, they found that the macrophages could not survive, anthrax bacteria grew unchecked or the infected mouse died rapidly. They also noted that the immune response pathway responded only to the most dangerous bacterial pathogens. Infections using a mutant anthrax bacterium lacking the deadly toxins did not set off the alarm system in test animals.

"We hope these findings can be exploited for the design of new treatments to help the body combat serious bacterial pathogens," said Victor Nizet, MD, professor of pediatrics and pharmacy, whose infectious disease research laboratory contributed to the study. "Supporting the survival of macrophages and preserving their immune function may buy patients precious time until antibiotic therapy is brought on board to clear the infection."

Co-authors of the study are Syed Razi Ali and Eek Joong Park, UCSD Department of Pharmacology; Anjuli Timmer, UCSD Department of Pediatrics; Sameera Bilgrami, UCSD Department of Pathology; Lars Eckmann, UCSD Department of Medicine.

Funding for this research came from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of California - San Diego. The original article was written by Scott LaFee. Note: Materials may be edited for content and length.


Journal Reference:

  1. Syed Raza Ali, Anjuli M. Timmer, Sameera Bilgrami, Eek Joong Park, Lars Eckmann, Victor Nizet, Michael Karin. Anthrax Toxin Induces Macrophage Death by p38 MAPK Inhibition but Leads to Inflammasome Activation via ATP Leakage. Immunity, 16 June 2011 DOI: 10.1016/j.immuni.2011.04.015

Cite This Page:

University of California - San Diego. "How the immune system fights back against anthrax infections." ScienceDaily. ScienceDaily, 17 June 2011. <www.sciencedaily.com/releases/2011/06/110616121910.htm>.
University of California - San Diego. (2011, June 17). How the immune system fights back against anthrax infections. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2011/06/110616121910.htm
University of California - San Diego. "How the immune system fights back against anthrax infections." ScienceDaily. www.sciencedaily.com/releases/2011/06/110616121910.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins