Science News
from research organizations

New technique elucidates dynamics of plant cell metabolites

Date:
September 13, 2011
Source:
RIKEN
Summary:
A new technique developed by researchers in Japan has clarified the location and dynamics of specific metabolites in a single cell of the alga Chara australis. The findings reveal that these metabolites are regulated and fluctuate under stress conditions, providing insight into previously unknown functions of the vacuole in cellular processes.
Share:
       
FULL STORY

Isolation of vacuolar and cytoplasmic fraction from an internodal cell of C. australis. The internodal cell (shown in the orange square in the upper-right photograph) is a large single cell growing to over 20 cm length. The vacuole solution of this cell is easily isolated by cutting the edge of the cell and emptying out its contents. The remaining cytoplasmic fraction and the vacuole solution are used for metabolomic analysis.
Credit: Image courtesy of RIKEN

A new technique developed by researchers at RIKEN has clarified the location and dynamics of specific metabolites in a single cell of the alga Chara australis. The findings reveal that these metabolites are regulated and fluctuate under stress conditions, providing insight into previously unknown functions of the vacuole in cellular processes.

Metabolites, the intermediates and products of chemical reactions that sustain all living organisms, play a central role in cellular processes including growth, differentiation and defense. Despite their importance, however, our understanding of the role of these metabolites in the cell is incomplete due to the lack of techniques for analyzing them at high spatial resolution.

In a paper to appear in the journal Plant Physiology, researchers at the RIKEN Plant Science Center (PSC) in Yokohama, Japan describe a novel technique which enables such high-resolution metabolite analysis. Their research focuses on Chara australis, an alga whose single, extremely large (up to 20 cm long) internodal cell provides a unique opportunity to study the detailed location and dynamics of metabolites inside the cell.

Their technique separates the cell into two parts, isolating its cytoplasm (containing plastids, mitochondria, nuclei, endomembrane system and cell wall) from its vacuole, a large water-filled compartment containing organic and inorganic molecules. Using this technique, the researchers demonstrate that the concentrations of 125 known metabolites in the vacuole and cytoplasm fluctuate asynchronously under stress conditions, suggesting that metabolites are spatially regulated in the cell.

By shedding light on the detailed distribution of metabolites in the cell, this finding marks a major advance in our understanding of plant cell metabolism. The technique used likewise charts new ground, providing unprecedented detail on organelle-specific metabolite concentration and highlighting the usefulness of C. autralis as a model organism for biological studies at the single-cell level.


Story Source:

The above post is reprinted from materials provided by RIKEN. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Oikawa, F. Matsuda, M. Kikuyama, T. Mimura, K. Saito. Metabolomics of a single vacuole reveals metabolic dynamism in an alga Chara australis. Plant Physiology, 2011; DOI: 10.1104/pp.111.183772

Cite This Page:

RIKEN. "New technique elucidates dynamics of plant cell metabolites." ScienceDaily. ScienceDaily, 13 September 2011. <www.sciencedaily.com/releases/2011/09/110913090840.htm>.
RIKEN. (2011, September 13). New technique elucidates dynamics of plant cell metabolites. ScienceDaily. Retrieved August 29, 2015 from www.sciencedaily.com/releases/2011/09/110913090840.htm
RIKEN. "New technique elucidates dynamics of plant cell metabolites." ScienceDaily. www.sciencedaily.com/releases/2011/09/110913090840.htm (accessed August 29, 2015).

Share This Page: