Featured Research

from universities, journals, and other organizations

Biochemists identify new genetic code repair tool

Date:
September 27, 2011
Source:
Clemson University
Summary:
Researchers recently reported finding a new class of DNA repair-makers. To ensure the integrity of the genetic material, cells are equipped with a "molecular toolkit" for repairing DNA damage. The toolkit is composed of a variety of different molecules -- called enzymes -- that have evolved to repair different types of DNA damage. Researchers have now discovered a new class of enzymes in that superfamily that lack the ability to repair uracil.

Clemson University researchers recently reported finding a new class of DNA repair-makers.

Clemson biochemist Weiguo Cao studies how cells repair damaged DNA. The finding from Cao's lab in the Clemson Biosystems Research Complex in collaboration with computational chemist Brian Dominy appeared in the Sept. 9 issue of The Journal of Biological Chemistry: "A new family of deamination repair enzymes in the uracil DNA glycosylase superfamily by Hyun-Wook Lee, Brian N. Dominy and Weiguo Cao."

"DNA is a string of a long molecule composed of four building blocks: A for adenine, T for thymine, G for guanine and C for cytosine. The heredity of all organisms is determined by the pairing of A with T and G with C," said Cao, a professor in the genetics and biochemistry department.

DNA is constantly assaulted by various stresses. A common type of damage is modification of three out of the four building blocks for genetic code, A, G, C by a chemical process called deamination. The genetic consequence of deamination is that it will change the pairing of the genetic code. For example, the deamination of C (cytosine) will generate U (uracil). Instead of pairing with G as C will do, U pairs with A. In so doing, it changes the genetic program inside the cell and may cause dangerous mutations resulting in disease.

To ensure the integrity of the genetic material, cells are equipped with a "molecular toolkit" for repairing DNA damage. The toolkit is composed of a variety of different molecules -- called enzymes -- that have evolved to repair different types of DNA damage. One of the DNA repair enzymes the Cao lab studies is called uracil DNA glycosylase (UDG). As it's name indicates, it is traditionally known as an enzyme that removes uracil from DNA. Because deamination of C (cytosine) is a very common type of damage found in DNA, UDG has been found in many organisms and researchers have grouped them into five families in the so-called UDG superfamily.

In their most recent work, Cao and his colleagues discovered a new class of enzymes in that superfamily that lack the ability to repair uracil. A further study showed that this class of enzymes, instead, is engaged in the repair of deamination on the different building block adenine. This caught them by surprise because all known UDG enzymes are capable of uracil repair.

To further understand how this new class of enzymes works as a tool for repair, Cao and Dominy combined computational and biochemical methods to pinpoint the critical part of the repair machine that is responsible.

"What we learned from this work is that DNA repair toolkits have an amazing ability to evolve different repair functions for different kinds of DNA damage," Cao said. "This work also demonstrates how a combination of research approaches from different disciplines makes the discovery possible."

"Collaborative efforts involving computational and experimental investigative methods can greatly enhance the efficiency of scientific discovery, as well as provide more thorough answers to very important scientific questions," Dominy said. "In my opinion, the collaborative efforts between our two groups have demonstrated the substantial value of such interactions."


Story Source:

The above story is based on materials provided by Clemson University. Note: Materials may be edited for content and length.


Journal Reference:

  1. H.-W. Lee, B. N. Dominy, W. Cao. New Family of Deamination Repair Enzymes in Uracil-DNA Glycosylase Superfamily. Journal of Biological Chemistry, 2011; 286 (36): 31282 DOI: 10.1074/jbc.M111.249524

Cite This Page:

Clemson University. "Biochemists identify new genetic code repair tool." ScienceDaily. ScienceDaily, 27 September 2011. <www.sciencedaily.com/releases/2011/09/110927124647.htm>.
Clemson University. (2011, September 27). Biochemists identify new genetic code repair tool. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2011/09/110927124647.htm
Clemson University. "Biochemists identify new genetic code repair tool." ScienceDaily. www.sciencedaily.com/releases/2011/09/110927124647.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins