Featured Research

from universities, journals, and other organizations

Discovery of new gene could improve efficiency of molecular factories

Date:
November 3, 2011
Source:
Michigan State University
Summary:
The discovery of a new gene is helping researchers envision more-efficient molecular factories of the future.

The discovery of a new gene is helping researchers at Michigan State University envision more-efficient molecular factories of the future. A team of researchers, led by Katherine Osteryoung, MSU plant biologist, announced the discovery of Clumped Chloroplasts -- a new class of proteins -- in the current issue of the Proceedings of the National Academy of Sciences. CLMP1 plays a key role in helping chloroplasts, which carry out the life-sustaining process of photosynthesis, separate when the chloroplasts divide. The newly identified proteins are also critical in the perpetuation of chloroplasts during cell division.

Related Articles


Green chloroplasts in plant cells are essentially molecular factories where carbon dioxide from air is used to produce sugar, food for plants. When leaves are growing, chloroplasts increase their numbers dramatically by dividing in half. A single leaf cell can end up having more than100 chloroplasts. The expanded chloroplast population boosts photosynthesis and subsequently increases the plant's growth. CLMP1 is one of many proteins that function together like a well-oiled machine to help chloroplasts divide and multiply.

Studying mutant Arabidopsis thaliana plants that failed to produce CLMP1, Osteryoung saw that the chloroplasts had nearly completed the division process, but they failed to separate, instead remaining connected to each other through thin membranes.

"The mutant plants had chloroplasts that appeared like clusters of grapes," said Osteryoung, who was recently named an AAAS Fellow. "In normal plants, chloroplasts are separated and distributed throughout cells. This enables the chloroplasts to move freely around the cell to maximize photosynthesis. In the mutant, where the chloroplasts remain bunched together, they cannot move around as freely, which probably impairs photosynthesis. The discovery of CLMP1 helps explain how plants have evolved mechanisms to promote chloroplast division and dispersal and avoid clumping."

In normal plants, the separation and distribution of chloroplasts also helps ensure that, when cells divide, each daughter cell inherits about half of the chloroplasts. Further investigation demonstrated that CLMP1 is required for this normal inheritance of chloroplasts during cell division, she added.

Since genes closely related to CLMP1 are also present in crop plants, Osteryoung's research could lead to improvements in corn, wheat, soybeans and other food crops.

"In the long run, this could lead to improvements in crops through breeding and/or genetic manipulation for improved chloroplast distribution," Osteryoung said.

Additional contributors to the paper included Yue Yang, MSU postdoctoral researcher, Shin-Han Shiu, MSU plant biologist, John Froehlich, MSU-DOE Plant Research Laboratory, Kathleen Imre, MSU biochemist and molecular biologist, scientists from the University of Toronto and the University of California, San Francisco, and Tiara Ahamd and Yi Liu, MSU undergraduate students.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y. Yang, T. L. Sage, Y. Liu, T. R. Ahmad, W. F. Marshall, S.-H. Shiu, J. E. Froehlich, K. M. Imre, K. W. Osteryoung. CLUMPED CHLOROPLASTS 1 is required for plastid separation in Arabidopsis. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1106706108

Cite This Page:

Michigan State University. "Discovery of new gene could improve efficiency of molecular factories." ScienceDaily. ScienceDaily, 3 November 2011. <www.sciencedaily.com/releases/2011/11/111103143436.htm>.
Michigan State University. (2011, November 3). Discovery of new gene could improve efficiency of molecular factories. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2011/11/111103143436.htm
Michigan State University. "Discovery of new gene could improve efficiency of molecular factories." ScienceDaily. www.sciencedaily.com/releases/2011/11/111103143436.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins