Featured Research

from universities, journals, and other organizations

How cholera bacterium gains a foothold in the gut

Date:
January 27, 2012
Source:
University of York
Summary:
Biologists have made an important advance in our understanding of the way cholera attacks the body. The discovery could help scientists target treatments for the globally significant intestinal disease which kills more than 100,000 people every year.

A team of biologists at the University of York has made an important advance in our understanding of the way cholera attacks the body. The discovery could help scientists target treatments for the globally significant intestinal disease which kills more than 100,000 people every year.

Related Articles


The disease is caused by the bacterium Vibrio cholerae, which is able to colonise the intestine usually after consumption of contaminated water or food. Once infection is established, the bacterium secretes a toxin that causes watery diarrhea and ultimately death if not treated rapidly. Colonisation of the intestine is difficult for incoming bacteria as they have to be highly competitive to gain a foothold among the trillions of other bacteria already in situ.

Scientists at York, led by Dr. Gavin Thomas in the University's Department of Biology, have investigated one of the important routes that V. cholera uses to gain this foothold. To be able to grow in the intestine the bacterium harvests and then eats a sugar, called sialic acid, that is present on the surface of our gut cells.

Collaborators of the York group at the University of Delaware, USA, led by Professor Fidelma Boyd, had shown previously that eating sialic acid was important for the survival of V. cholerae in animal models, but the mechanism by which the bacteria recognise and take up the sialic was unknown.

The York research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), demonstrates that the pathogen uses a particular kind of transporter called a TRAP transporter to recognise sialic acid and take it up into the cell. The transporter has particular properties that are suited to scavenging the small amount of available sialic acid. The research also provided some important basic information about how TRAP transporters work in general.

The leader of the research in York, Dr. Gavin Thomas, said: "This work continues our discoveries of how bacteria that grow in our body exploit sialic acid for their survival and help us to take forward our efforts to design chemicals to inhibit these processes in different bacterial pathogens."


Story Source:

The above story is based on materials provided by University of York. Note: Materials may be edited for content and length.


Journal Reference:

  1. Christopher Mulligan, Andrew P. Leech, David J. Kelly and Gavin H. Thomas. The Membrane Proteins SiaQ and SiaM Form an Essential Stoichiometric Complex in the Sialic Acid Tripartite ATP-independent Periplasmic (TRAP) Transporter SiaPQM (VC1777–1779) from Vibrio cholera. The Journal of Biological Chemistry, Vol. 287, Issue 5, 3598-3608 DOI: 10.1074/jbc.M111.281030 jbc.M111.281030

Cite This Page:

University of York. "How cholera bacterium gains a foothold in the gut." ScienceDaily. ScienceDaily, 27 January 2012. <www.sciencedaily.com/releases/2012/01/120127135940.htm>.
University of York. (2012, January 27). How cholera bacterium gains a foothold in the gut. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2012/01/120127135940.htm
University of York. "How cholera bacterium gains a foothold in the gut." ScienceDaily. www.sciencedaily.com/releases/2012/01/120127135940.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Deepwater And Dolphins: The Oil Spill's Impact 5 Years On

Newsy (Apr. 20, 2015) Five years on, the possible environmental impact of the Deepwater Horizon spill includes a sustained die-off of bottlenose dolphins, among others. Video provided by Newsy
Powered by NewsLook.com
Five Years Later, the BP Oil Spill Is Still Taking Its Toll

Five Years Later, the BP Oil Spill Is Still Taking Its Toll

AFP (Apr. 20, 2015) On April 20, 2010, an explosion and fire on the Deepwater Horizon rig in the Gulf of Mexico started the biggest oil spill in US history. BP recently reported the Gulf is recovering well, but scientists paint a different picture. Duration: 02:36 Video provided by AFP
Powered by NewsLook.com
Thai Customs Seize African Elephant Tusks Worth $6 Mn

Thai Customs Seize African Elephant Tusks Worth $6 Mn

AFP (Apr. 20, 2015) Thai customs seize four tonnes of African elephant ivory worth $6 million at a Bangkok port in a container labelled as beans. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Un-Bee-Lievable: Bees on the Loose After Washington Truck Crash

Reuters - US Online Video (Apr. 17, 2015) A truck carrying honey bees overturns near Lynnwood, Washington, spreading boxes of live bees across the highway. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins