Featured Research

from universities, journals, and other organizations

How cholera bacterium gains a foothold in the gut

Date:
January 27, 2012
Source:
University of York
Summary:
Biologists have made an important advance in our understanding of the way cholera attacks the body. The discovery could help scientists target treatments for the globally significant intestinal disease which kills more than 100,000 people every year.

A team of biologists at the University of York has made an important advance in our understanding of the way cholera attacks the body. The discovery could help scientists target treatments for the globally significant intestinal disease which kills more than 100,000 people every year.

The disease is caused by the bacterium Vibrio cholerae, which is able to colonise the intestine usually after consumption of contaminated water or food. Once infection is established, the bacterium secretes a toxin that causes watery diarrhea and ultimately death if not treated rapidly. Colonisation of the intestine is difficult for incoming bacteria as they have to be highly competitive to gain a foothold among the trillions of other bacteria already in situ.

Scientists at York, led by Dr. Gavin Thomas in the University's Department of Biology, have investigated one of the important routes that V. cholera uses to gain this foothold. To be able to grow in the intestine the bacterium harvests and then eats a sugar, called sialic acid, that is present on the surface of our gut cells.

Collaborators of the York group at the University of Delaware, USA, led by Professor Fidelma Boyd, had shown previously that eating sialic acid was important for the survival of V. cholerae in animal models, but the mechanism by which the bacteria recognise and take up the sialic was unknown.

The York research, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), demonstrates that the pathogen uses a particular kind of transporter called a TRAP transporter to recognise sialic acid and take it up into the cell. The transporter has particular properties that are suited to scavenging the small amount of available sialic acid. The research also provided some important basic information about how TRAP transporters work in general.

The leader of the research in York, Dr. Gavin Thomas, said: "This work continues our discoveries of how bacteria that grow in our body exploit sialic acid for their survival and help us to take forward our efforts to design chemicals to inhibit these processes in different bacterial pathogens."


Story Source:

The above story is based on materials provided by University of York. Note: Materials may be edited for content and length.


Journal Reference:

  1. Christopher Mulligan, Andrew P. Leech, David J. Kelly and Gavin H. Thomas. The Membrane Proteins SiaQ and SiaM Form an Essential Stoichiometric Complex in the Sialic Acid Tripartite ATP-independent Periplasmic (TRAP) Transporter SiaPQM (VC1777–1779) from Vibrio cholera. The Journal of Biological Chemistry, Vol. 287, Issue 5, 3598-3608 DOI: 10.1074/jbc.M111.281030 jbc.M111.281030

Cite This Page:

University of York. "How cholera bacterium gains a foothold in the gut." ScienceDaily. ScienceDaily, 27 January 2012. <www.sciencedaily.com/releases/2012/01/120127135940.htm>.
University of York. (2012, January 27). How cholera bacterium gains a foothold in the gut. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/01/120127135940.htm
University of York. "How cholera bacterium gains a foothold in the gut." ScienceDaily. www.sciencedaily.com/releases/2012/01/120127135940.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins