Featured Research

from universities, journals, and other organizations

New insight on molecular motor movement: Mini cargo transporters on a rat run

Date:
April 26, 2012
Source:
Technische Universitaet Muenchen
Summary:
Kinesins assume a vital function in our cells: The tiny cargo transporters move important substances along lengthy protein fibers and ensure an effective transportation infrastructure. Biophysicists have now discovered how some of these transporters can, like cars on a multi-lane motorway, change lanes.

Biophysicists of the Technische Universitaet Muenchen and the Ludwig Maximillians Universitaet Muenchen have discovered why some of these transporters can, like cars on a multi-lane motorway, change lanes: The heads of one kinesin (red) have a longer range than the other (blue) which allows "lane change" between the individual fibers (protofilaments) of the microtubule and results in a spiraling movement of the motor on the microtubule. A shorter range of the heads results in a straight movement of the motor.
Credit: Melanie Brunnbauer /TU Muenchen

Kinesins assume a vital function in our cells: The tiny cargo transporters move important substances along lengthy protein fibers and ensure an effective transportation infrastructure. Biophysicists of the Technische Universitaet Muenchen (TUM) and the Ludwig Maximillians Universitaet Muenchen (LMU) have now discovered how some of these transporters can, like cars on a multi-lane motorway, change lanes. The researchers report on this hitherto unknown phenomenon in the current edition of the  journal Molecular Cell.

Related Articles


Molecular motors are the key to the development of higher forms of life. They transport proteins, signal molecules and even entire chromosomes down long protein fibers, components of the so-called cytoskeleton, from one location in the cell to another. Not unlike trucks on a motorway, there are permanently thousands of these small motor proteins underway at any given point in time -- a highly coordinated and extremely fast mode of transport. This highly efficient infrastructure is a prerequisite for the formation of large, complex cells and multicellular organisms. Bacteria, for example, lack this foundation, because they possess neither molecular motors nor cytoskeletons.

Kinesins represent one class of such molecular motors. They run along microtubules comprising 13 individual fibers arranged in a tube form. Kinesins are made up of a twisted pair of protein chains. Each chain comprises a head that can dock to the surface of the microtubules and a neck domain, as well as a stalk and tail domain that the cargo is attached to. Kinesins move forward by placing one head in front of the other in alternation which resembles human walking. The first mechanistically scrutinized kinesin was Kinesin-1, which performs numerous steps in succession without detaching from the microtubule. In the process it moves ahead in a perfectly straight path on its long journey, always remaining on a single fiber of the microtubule.

Scientists led by Zeynep Oekten, group leader at the Biophysics Department of the Technische Universitaet Muenchen, and Melanie Brunnbauer, a doctoral candidate at the Biophysics Department, have now for the first time demonstrated that kinesins also "switch lanes" during transport. The scientists identified the region in the kinesin protein that determines whether a given kinesin type moves on a straight path or in a spiral fashion. It is a structural element in the neck domain. "If the neck region is stable, the two kinesin heads have only limited reach. The kinesin cannot make any sidesteps and thus moves straight ahead," says Oekten. "However, if the responsible area becomes destabilized, the reach of the heads is increased and the motor protein can jump fibers and spiral around the microtubule."

To confirm this new insight, the scientists integrated specific amino acids into the responsible areas -- a kind of molecular switch that allowed them to regulate the reach of the two heads. The result left no doubt: Destabilizing the neck region of the Kinesin-1 motor increases the reach of the two heads, which in turn causes the Kinesin-1 to depart from its normally perfectly straight path and move along a spiral-shaped path. When they mimicked a stable neck region using a chemical crosslinker, they coerced the protein into running straight again.

Oekten and Brunnbauer arrived at their new insight using a unique experimental setup. They placed two 3-micron large synthetic beads in a solution and trapped each using a laser beam, a so-called pair of "optical tweezers." Then, in precision work, they placed a piece microtubule between the beads. In a final step, again using a laser beam, they trapped a third bead coated with a specific type of kinesin and carefully placed it onto the microtubule.

As soon as they deactivated the third laser beam, the motor protein started marching forward and the scientist could follow the path of the molecule under the microscope. "In this way we were able, for the first time ever, to directly observe the spiraling movement of a motor type," explains Oekten. "When we saw the teetering movement of a Kinesin-2 protein for the first time, we all laughed. The motion was so clear and obvious, you just had to look at it and all doubt vanished." The experimental setup allows the molecular motors to move freely, thereby emulating real-life conditions in the cell much better than previous methods of investigation.

Using their new experimental setup, Oekten and Brunnbauer investigated a whole series of different Kinesin-2 proteins from various organisms -- with an unexpected result: Contrary to the hitherto prevalent assumption that kinesins typically move only on straight paths, almost all kinesins displayed some form of spiral movement, in manifold variations. "This shows us that spiral motion is not an exception in nature, but rather the rule," explains Oekten. "In fact, the more relevant question is why evolution has brought about the straight-line movement as we observe with the Kinesin-1. That is truly unusual considering the nano-scale precision it requires to confine a kinesin transporter on an exclusively straight path." The researchers Oekten and Brunnenbauer hope to more closely investigate the reasons for the various kinds of motion in the future.

The research was funded by the Deutsche Forschungsgemeinschaft (DFG, SFB 863). In the publication, the authors extend special thanks to Brunnbauer's baby son Benedikt and his babysitter Christine Wurm. In the Biophysics Department, Melanie Brunnbauer found the flexibility and support she needed to continue her work following the birth of her son. Her success provides the proof that family and cutting-edge research are not mutually exclusive -- given the right conditions.


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Melanie Brunnbauer, Renate Dombi, Thi-Hieu Ho, Manfred Schliwa, Matthias Rief, Zeynep Φkten. Torque Generation of Kinesin Motors Is Governed by the Stability of the Neck Domain. Molecular Cell, 2012; 46 (2): 147 DOI: 10.1016/j.molcel.2012.04.005

Cite This Page:

Technische Universitaet Muenchen. "New insight on molecular motor movement: Mini cargo transporters on a rat run." ScienceDaily. ScienceDaily, 26 April 2012. <www.sciencedaily.com/releases/2012/04/120426135357.htm>.
Technische Universitaet Muenchen. (2012, April 26). New insight on molecular motor movement: Mini cargo transporters on a rat run. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/04/120426135357.htm
Technische Universitaet Muenchen. "New insight on molecular motor movement: Mini cargo transporters on a rat run." ScienceDaily. www.sciencedaily.com/releases/2012/04/120426135357.htm (accessed October 30, 2014).

Share This



More Plants & Animals News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Galapagos Tortoises Bounce Back, But Ecosystem Lags

Galapagos Tortoises Bounce Back, But Ecosystem Lags

Newsy (Oct. 29, 2014) — The Galapagos tortoise has made a stupendous recovery from the brink of extinction to a population of more than 1,000. But it still faces threats. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) — Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) — Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Oatmeal Healthy Recipes and Benefits

Oatmeal Healthy Recipes and Benefits

Buzz60 (Oct. 29, 2014) — Oatmeal is a fantastic way to start your day. Whichever way you prepare them, oats provide your body with many health benefits. In celebration of National Oatmeal Day, Krystin Goodwin (@krystingoodwin) has a few recipe ideas, and tips on how to kickstart your day with this wholesome snack! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins