Featured Research

from universities, journals, and other organizations

New key mechanism in cell division discovered

Date:
May 18, 2012
Source:
IDIBELL-Bellvitge Biomedical Research Institute
Summary:
Researchers have identified the mechanism by which protein Zds1 regulates a key function in mitosis, the process that occurs immediately before cell division. The research opens the door to developing targeted and direct therapies against cancer.

Yeast cells used for the study of chromosomes division.
Credit: Image courtesy of IDIBELL-Bellvitge Biomedical Research Institute

Researchers from the Bellvitge Biomedical Research Institute (IDIBELL) have identified the mechanism by which protein Zds1 regulates a key function in mitosis, the process that occurs immediately before cell division. The result has been achieved in the online edition of the Journal of Cell Science and opens the door to developing targeted and direct therapies against cancer.

Related Articles


In every organism, cells grow and divide into two daughter cells through an orderly succession of events called "cell cycle." Cells have to complete four main processes during the cell cycle: growth (G1 and G2 phases), doubling the DNA (S phase), segregation of chromosomes (M phase, mitosis) and division (cytokinesis). In the S phase or DNA replication, the genetic material is duplicated and then during the M phase or mitosis, cells separate the duplicated chromosomes between two daughter cells. This will ensure correct inheritance of genetic information from one cell generation to the next.

Chromosomal stability

The transmission of genetic information (DNA) from parent to child (or equivalently, from cell to cell) is a fundamental question in biology. Aneuploidy, ie lack or excess of chromosomes, is a feature present in almost all human cancers and promotes tumour development. Regulation of mitosis is particularly important for maintaining chromosomal stability. For example, tumour cells are aneuploid due to defects in the segregation of chromosomes, which originate cells with more or less genetic material than usual.

However, in spite of its importance, very little is known about the output regulation of mitosis. In the article published in the Journal of Cell Science, the Cell Cycle research group at IDIBELL led by Ethel Queralt, discovers a new mechanism of regulation of mitotic exit.

Separase protein is a key component for proper chromosome segregation and the regulation of mitosis. In previous work, the group of Dr. Queralt described for the first time the involvement of Zds1 protein in mitosis. This protein cooperates with the separase to ensure correct genetic inheritance from cell to cell.

The study delves into the molecular mechanism by which this protein Zds1 regulates mitosis and contributes to the right segregation of chromosomes. In this paper there have been used the yeast Saccharomyces cerevisiae as a model organism.

Yeast is one of the most widely used model organisms to study basic processes in the cell, allowing to identify complex molecular mechanisms as the study of cell cycle in higher organisms. The application of such basic knowledge will help to develop more specific and direct treatments against various cancers.

Dr. Queralt points out that "the mechanisms of regulation of mitosis are very complex and well-known fact opens the door to specific drugs that inhibit or enable to correct this process in various diseases, especially cancer." She explains that most anticancer drugs are being implemented without knowing exactly how they work, "these are compounds that often we do not know how are working, but they do. If we follow a reverse process, ie if we start to know the activity of a protein or part of the protein, we could design specific drugs to minimize side effects." Dr. Queralt's researching is an important step in developing therapies that prevent tumour cells from replicating.


Story Source:

The above story is based on materials provided by IDIBELL-Bellvitge Biomedical Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. I. Calabria, B. Baro, J.-A. Rodriguez-Rodriguez, N. Russinol, E. Queralt. Zds1 regulates PP2ACdc55 activity and Cdc14 activation during mitotic exit via its Zds_C motif. Journal of Cell Science, 2012; DOI: 10.1242/jcs.097865

Cite This Page:

IDIBELL-Bellvitge Biomedical Research Institute. "New key mechanism in cell division discovered." ScienceDaily. ScienceDaily, 18 May 2012. <www.sciencedaily.com/releases/2012/05/120518132804.htm>.
IDIBELL-Bellvitge Biomedical Research Institute. (2012, May 18). New key mechanism in cell division discovered. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2012/05/120518132804.htm
IDIBELL-Bellvitge Biomedical Research Institute. "New key mechanism in cell division discovered." ScienceDaily. www.sciencedaily.com/releases/2012/05/120518132804.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lioness Has Rare Five-Cub Litter

Raw: Lioness Has Rare Five-Cub Litter

AP (Mar. 27, 2015) — A lioness in Pakistan has given birth to five cubs, twice the usual size of a litter. Queen gave birth to two other cubs just nine months ago. (March 27) Video provided by AP
Powered by NewsLook.com
Jockey Motion Tracking Reveals Racing Prowess

Jockey Motion Tracking Reveals Racing Prowess

Reuters - Innovations Video Online (Mar. 26, 2015) — Using motion tracking technology, researchers from the Royal Veterinary College (RVC) are trying to establish an optimum horse riding style to train junior jockeys, as well as enhance safety, health and well-being of both racehorses and jockeys. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Bear Cubs Tumble for the Media

Bear Cubs Tumble for the Media

Reuters - Light News Video Online (Mar. 26, 2015) — Two Andean bear cubs are unveiled at the U.S. National Zoo in Washington, D.C. Alicia Powell reports. Video provided by Reuters
Powered by NewsLook.com
Botswana Talks to End Illegal Wildlife Trade

Botswana Talks to End Illegal Wildlife Trade

AFP (Mar. 25, 2015) — Experts are gathering in Botswana to try to end the illegal wildlife trade that is decimating populations of elephants, rhinos and other threatened species. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins