Featured Research

from universities, journals, and other organizations

Scientists identify first gene in programmed axon degeneration

Date:
June 7, 2012
Source:
University of Massachusetts Medical School
Summary:
Researchers have described a gene – dSarm/Sarm1 – responsible for actively promoting axon destruction after injury. The research provides evidence of an exciting new therapeutic target that could be used to delay or even stop axon decay.

Degeneration of the axon and synapse, the slender projection through which neurons transmit electrical impulses to neighboring cells, is a hallmark of some of the most crippling neurodegenerative and brain diseases such as amyotrophic lateral sclerosis (ALS), Huntington's disease and peripheral neuropathy. Scientists have worked for decades to understand axonal degeneration and its relation to these diseases. Now, researchers at the University of Massachusetts Medical School are the first to describe a gene -- dSarm/Sarm1 -- responsible for actively promoting axon destruction after injury. The research, published June 7 online by Science, provides evidence of an exciting new therapeutic target that could be used to delay or even stop axon decay.

"This discovery has the potential to have a profound impact on our understanding of neurodegenerative diseases, much like the discovery of apoptosis (programmed cell death) fundamentally changed our understanding of cancer," said Marc R. Freeman, PhD, associate professor of neurobiology at the University of Massachusetts Medical School and lead investigator on the study. "Identification of this gene allows us to start asking exciting new questions about the role of axon death in neurodegenerative diseases. For example, is it possible that these pathways are being inappropriately activated to cause premature axon death?"

For more than a century, scientists believed that injured axons severed from the neuron cell body passively wasted away due to a lack of nutrients. However, a mouse mutation identified in the early 1990s -- called slow Wallerian degeneration (Wlds) -- was able to suppress axon degeneration for weeks. This finding forced scientists to reassess Wallerian degeneration, the process through which an injured axon degenerates, as a passive process and consider the possibility that an active program of axon auto-destruction, akin to apoptotic death, was at work instead.

If Wallerian degeneration was an active process, hypothesized Dr. Freeman, a Howard Hughes Medical Institute Early Career Scientist, then it should be possible through forward genetic screens in Drosophila to identify mutants exhibiting Wlds-like axon protection. Freeman and colleagues screened more than 2,000 Drosophila mutants for ones that exhibited long-term survival of severed axons. Freeman says this was a heroic effort on the part of his colleagues. The screen took place over the next two and a half years, and involved seven students and post-docs in the Freeman lab -- Jeannette M. Osterloh, A. Nicole Fox, PhD, Michelle A. Avery, PhD, Rachel Hackett, Mary A. Logan, PhD, Jennifer M. MacDonald, Jennifer S. Zeigenfuss -- who performed the painstaking and labor-intensive experiments needed on each Drosophila mutant to identify flies that suppressed axonal degeneration after nerve injury.

Through these tests, they identified three mutants (out of the 2,000 screened) where severed axons survived for the lifespan of the fly. Next generation sequencing and chromosome deficiency mapping techniques were then used to isolate the single gene affected in all three -- dSarm. These were loss-of-function alleles, meaning that Drosophila unable to produce the dSarm/Sarm1 molecule exhibited prolonged axon survival for as many as 30 days after injury. Freeman and colleagues went on to show that mice lacking Sarm1, the mammalian homolog of dSarm, also displayed remarkable preservation of injured axons. These findings provided the first direct evidence that Wallerian degeneration was driven by a conserved axonal death program and not a passive response to axon injury.

"For 20 years people have been looking for a gene whose normal function is to promote axon degeneration," said Osterloh, first author on the study. "Identification of the dSarm/Sarm1 gene has enormous therapeutic potential, for example as a knockdown target for patients suffering from diseases involving axonal loss."

The next step for Freeman and colleagues is to identify additional genes in the axon death pathway and investigate whether any have links with specific neurodegenerative diseases. "We're already working with scientists at UMMS to understand the role axon death plays in ALS and Huntington's disease," said Freeman. "We are very excited about the possibility that these findings could have broad therapeutic potential in many neurodegenerative diseases."


Story Source:

The above story is based on materials provided by University of Massachusetts Medical School. The original article was written by Jim Fessenden. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jeannette M. Osterloh, Jing Yang, Timothy M. Rooney, A. Nicole Fox, Robert Adalbert, Eric H. Powell, Amy E. Sheehan, Michelle A. Avery, Rachel Hackett, Mary A. Logan, Jennifer M. MacDonald, Jennifer S. Ziegenfuss, Stefan Milde, Ying-Ju Hou, Carl Nathan, Aihao Ding, Robert H. Brown Jr., Laura Conforti, Michael Coleman, Marc Tessier-Lavigne, Stephan Zόchner, and Marc R. Freeman. dSarm/Sarm1 Is Required for Activation of an Injury-Induced Axon Death Pathway. Science, 7 June 2012 DOI: 10.1126/science.1223899

Cite This Page:

University of Massachusetts Medical School. "Scientists identify first gene in programmed axon degeneration." ScienceDaily. ScienceDaily, 7 June 2012. <www.sciencedaily.com/releases/2012/06/120607142359.htm>.
University of Massachusetts Medical School. (2012, June 7). Scientists identify first gene in programmed axon degeneration. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/06/120607142359.htm
University of Massachusetts Medical School. "Scientists identify first gene in programmed axon degeneration." ScienceDaily. www.sciencedaily.com/releases/2012/06/120607142359.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) — Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) — Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) — At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) — The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins