Featured Research

from universities, journals, and other organizations

Well-known protein reveals new tricks

Date:
September 6, 2012
Source:
University of California, San Francisco (UCSF)
Summary:
A protein called clathrin, which is found in every human cell and plays a critical role in transporting materials within them, also plays a key role in cell division, according to new research.

A protein called "clathrin," which is found in every human cell and plays a critical role in transporting materials within them, also plays a key role in cell division, according to new research at the University of California, San Francisco.

The discovery, featured on the cover of the Journal of Cell Biology in August, sheds light on the process of cell division and provides a new angle for understanding cancer. Without clathrin, cells divide erratically and unevenly -- a phenomenon that is one of the hallmarks of the disease.

"Clathrin is doing more than we thought it was doing," said Frances Brodsky, DPhil, who led the research. Brodsky is a professor in the UCSF Department of Bioengineering and Therapeutic Sciences, a joint department of the Schools of Pharmacy and Medicine, and she holds joint appointments in Microbiology and Immunology, as well as Pharmaceutical Chemistry.

A Protein Essential for Transportation in More Than One Route

Akin to a three-pronged building block in a child's construction set, clathrin can provide links to create larger complexes. When lots of these proteins are assembled together, they can form tough little cages into which cells packs many of their essential biological molecules -- hormones, neurotransmitters, membrane proteins and other payloads that need to be transported throughout the cell.

Once thought to be solely involved in transport inside cells, scientists have uncovered more and more of the protein's hidden functions in the last half-dozen years, including some roles it plays in cell division.

For instance, they learned several years ago about its role in the function of "spindles." Normally when a cell divides, it forms a spindle by laying down tracks of structural proteins, and uses them as scaffolding to separate the cell's DNA (in the form of chromosomes) into two equal collections -- one identical set of DNA for each of the new daughter cells. Scientists found that clathrin is involved in stabilizing these spindles.

Now, however, Brodsky and her colleagues have shown that clathrin does even more. They deleted clathrin from cells using a technique called RNA interference, which involves infusing in small genetic fragments that block the cell from making the clathrin. Doing so, Brodsky and her colleagues showed that clathrin stabilizes the structures in dividing cells known as centrosomes.

Tagged with fluorescent chemicals and viewed under a microscope, the centrosomes within a cell that is about to divide look like two glowing eyes peering through the dark. But without clathrin, the team determined, the eyes increase in number.

Brodsky and her colleagues traced this effect to a protein complex formed by one particular component of clathrin called CHC17, which directly stabilizes the centrosome and helps it mature. Deleting CHC17 or chemically inactivating it, led to cells with a strange appearance. These cells contained multiple, fragmented centrosomes instead of the normal two and built abnormal spindles.

This discovery may reveal pathways towards abnormalities of chromosome segregation associated with cancer, said Brodsky.

The article, "Clathrin promotes centrosome integrity in early mitosis through stabilization of centrosomal ch-TOG" by Amy B. Foraker, Stιphane M. Camus, Timothy M. Evans, Sophia R. Majeed, Chih-Ying Chen, Sabrina B. Taner, Ivan R. Corrκa Jr., Stephen J. Doxsey and Frances M. Brodsky appears in the August 20, 2012 issue of the Journal of Cell Biology.

In addition to the group at UCSF, authors on this study are affiliated with New England Biolabs, Inc., in Ipswich, MA, and the University of Massachusetts Medical School in Worcester, MA.


Story Source:

The above story is based on materials provided by University of California, San Francisco (UCSF). The original article was written by Jason Bardi. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. B. Foraker, S. M. Camus, T. M. Evans, S. R. Majeed, C.-Y. Chen, S. B. Taner, I. R. Correa, S. J. Doxsey, F. M. Brodsky. Clathrin promotes centrosome integrity in early mitosis through stabilization of centrosomal ch-TOG. The Journal of Cell Biology, 2012; 198 (4): 591 DOI: 10.1083/jcb.201205116

Cite This Page:

University of California, San Francisco (UCSF). "Well-known protein reveals new tricks." ScienceDaily. ScienceDaily, 6 September 2012. <www.sciencedaily.com/releases/2012/09/120906181645.htm>.
University of California, San Francisco (UCSF). (2012, September 6). Well-known protein reveals new tricks. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2012/09/120906181645.htm
University of California, San Francisco (UCSF). "Well-known protein reveals new tricks." ScienceDaily. www.sciencedaily.com/releases/2012/09/120906181645.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) — Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) — He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) — An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins