Featured Research

from universities, journals, and other organizations

Discovery opens door to new drug options for serious diseases

Date:
March 4, 2013
Source:
Oregon State University
Summary:
Researchers have discovered how oxidative stress can turn to the dark side a cellular protein that's usually benign, and make it become a powerful, unwanted accomplice in neuronal death. This finding could ultimately lead to new therapeutic approaches to many of the world's debilitating or fatal diseases.

Death of a motor neuron. A motor neuron can die when nitrated HSP90 binds to P2x7.
Credit: Graphic courtesy of Oregon State University

Researchers have discovered how oxidative stress can turn to the dark side a cellular protein that's usually benign, and make it become a powerful, unwanted accomplice in neuronal death.

This finding, reported today in Proceedings of the National Academy of Sciences, could ultimately lead to new therapeutic approaches to many of the world's debilitating or fatal diseases.

The research explains how one form of oxidative stress called tyrosine nitration can lead to cell death. Through the common link of inflammation, this may relate to health problems ranging from heart disease to chronic pain, spinal injury, cancer, aging, and amyotrophic lateral sclerosis, or Lou Gehrig's disease.

As part of the work, the scientists also identified a specific "chaperone" protein damaged by oxidants, which is getting activated in this spiral of cellular decline and death. This insight will provide a new approach to design therapeutic drugs.

The findings were published by scientists from the Linus Pauling Institute at Oregon State University; Maria Clara Franco and Alvaro Estevez, now at the University of Central Florida; and researchers from several other institutions. They culminate a decade of work.

"These are very exciting results and could begin a major shift in medicine," said Joseph Beckman.

Beckman is an LPI principal investigator, distinguished professor of biochemistry, and director of the OSU Environmental Health Sciences Center. He also last year received the Discovery Award from the Medical Research Foundation of Oregon, given to the leading medical scientist in the state.

"Preventing this process of tyrosine nitration may protect against a wide range of degenerative diseases," Beckman said. "The study shows that drugs could effectively target oxidatively damaged proteins."

Scientists have known for decades about the general concept of oxidative damage to cells, resulting in neurodegeneration, inflammation and aging. But the latest findings prove that some molecules in a cell are thousands of times more sensitive to attack.

In this case, heat shock protein 90, or HSP90, helps monitor and chaperone as many as 200 necessary cell functions. But it can acquire a toxic function after nitration of a single tyrosine residue.

"It was difficult to believe that adding one nitro group to one protein will make it toxic enough to kill a motor neuron," Beckman said. "But nitration of HSP90 was shown to activate a pro-inflammatory receptor called P2X7. This begins a dangerous spiral that eventually leads to the death of motor neurons."

The very specificity of this attack, however, is part of what makes the new findings important. Drugs that could prevent or reduce oxidative attack on these most vulnerable sites in a cell might have value against a wide range of diseases.

"Most people think of things like heart disease, cancer, aging, liver disease, even the damage from spinal injury as completely different medical issues," Beckman said. "To the extent they can often be traced back to inflammatory processes that are caused by oxidative attack and cellular damage, they can be more similar than different.

"It could be possible to develop therapies with value against many seemingly different health problems," Beckman added.

Beckman has spent much of his career studying the causes of amyotrophic lateral sclerosis, and this study suggested the processes outlined in this study might be relevant both to that disease and spinal cord injury.

One key to this research involved new methods that allowed researchers to genetically engineer nitrotyrosine into HSP90. This allowed scientists to pin down the exact areas of damage, which may be important in the identification of drugs that could affect this process, the researchers said.

This work was supported by the National Institutes of Health, Burke Medical Research Institute, Weill Cornell Medical College, the ALS Association and other agencies.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Maria Clara Franco, Yaozu Ye, Christian A. Refakis, Jessica L. Feldman, Audrey L. Stokes, Manuela Basso, Raquel M. Melero Fernαndez de Mera, Nicklaus A. Sparrow, Noel Y. Calingasan, Mahmoud Kiaei, Timothy W. Rhoads, Thong C. Ma, Martin Grumet, Stephen Barnes, M. Flint Beal, Joseph S. Beckman, Ryan Mehl, and Alvaro G. Estιvez. Nitration of Hsp90 induces cell death. PNAS, 2013 DOI: 10.1073/pnas.1215177110

Cite This Page:

Oregon State University. "Discovery opens door to new drug options for serious diseases." ScienceDaily. ScienceDaily, 4 March 2013. <www.sciencedaily.com/releases/2013/03/130304151802.htm>.
Oregon State University. (2013, March 4). Discovery opens door to new drug options for serious diseases. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2013/03/130304151802.htm
Oregon State University. "Discovery opens door to new drug options for serious diseases." ScienceDaily. www.sciencedaily.com/releases/2013/03/130304151802.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) — Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) — Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) — Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) — Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Discovery of 'executioner' Protein Opens Door to New Options for Stroke ALS, Spinal Cord Injury

Mar. 4, 2013 — Oxidative stress turns a protein that normally protects healthy cells into their executioner, according to a new ... read more

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins