Featured Research

from universities, journals, and other organizations

Molecular 'superglue' based on flesh-eating bacteria

Date:
April 11, 2013
Source:
American Chemical Society (ACS)
Summary:
In a classic case of turning an enemy into a friend, scientists have engineered a protein from flesh-eating bacteria to act as a molecular "superglue" that promises to become a disease fighter.

SpyCatcher (top left) superglues itself to SpyTag (top right), creating an irreversible connection between two proteins (bottom).
Credit: Mark Howarth, Ph.D.

In a classic case of turning an enemy into a friend, scientists have engineered a protein from flesh-eating bacteria to act as a molecular "superglue" that promises to become a disease fighter. And their latest results, which make the technology more versatile, were the topic of a report in New Orleans on April 11 at the 245th National Meeting & Exposition of the American Chemical Society.

"We've turned the tables and put one kind of flesh-eating bacterium to good use," said Mark Howarth, Ph.D., who led the research. "We have engineered one of its proteins into a molecular superglue that adheres so tightly that the set-up we used to measure the strength actually broke. It resists high and low temperatures, acids and other harsh conditions and seals quickly. With this material we can lock proteins together in ways that could underpin better diagnostic tests -- for early detection of cancer cells circulating in the blood, for instance. There are many uses in research, such as probing how the forces inside cells change the biochemistry and affect health and disease."

Howarth's team at the University of Oxford in the United Kingdom genetically engineered the glue from a protein, FbaB, that helps Streptococcus pyogenes (S. pyogenes) bacteria infect cells. S. pyogenes is one of the microbes that can cause the rare necrotizing fasciitis, or flesh-eating bacteria syndrome, in which difficult-to-treat infections destroy body tissue.

They split FbaB into two parts, a larger protein and a smaller protein subunit, termed a peptide. Abbreviating S. pyogenes as "Spy," they named the small peptide "SpyTag" and the larger protein "SpyCatcher." The gluing action occurs when SpyTag and SpyCatcher meet. They quickly lock together by forming one of the strongest possible chemical bonds. SpyCatcher and SpyTag can be attached to the millions of proteins in the human body and other living things, thus gluing proteins together.

In an advance reported at the meeting, Howarth described how Jacob Fierer, a graduate student on the research team, greatly reduced the size of the SpyCatcher part of the technology. That achievement makes the technology more flexible, enabling scientists to connect proteins into new architectures, he said.

One of the applications on the horizon involves testing the technology as a new way to detect "circulating tumor cells," or CTCs. Tumors shed these cells into the bloodstream, where they may act as seeds, spreading or metastasizing cancer from the original site to other parts of the body. That spreading is the reason why cancer is such a serious health problem. Detecting CTCs is an active area of research worldwide because of its potential for early diagnosis of cancer -- from blood samples rather than biopsies -- and determining when new treatments may be needed to prevent the disease from spreading.

Howarth said that the Spy technology has advantages over other molecular gluing systems that are available. SpyCatcher and SpyTag, for instance, can glue two proteins together at any point in the protein. "That flexibility allows us many different ways to label proteins and gives us new approaches to assemble proteins together for diagnostic tests," Howarth explained.

Howarth and colleagues are working with Isis Innovation, the University of Oxford's technology transfer company, to find potential partners to bring the Spy system to the market.

The researchers acknowledge funding from the Clarendon Fund.


Story Source:

The above story is based on materials provided by American Chemical Society (ACS). Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society (ACS). "Molecular 'superglue' based on flesh-eating bacteria." ScienceDaily. ScienceDaily, 11 April 2013. <www.sciencedaily.com/releases/2013/04/130411105822.htm>.
American Chemical Society (ACS). (2013, April 11). Molecular 'superglue' based on flesh-eating bacteria. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2013/04/130411105822.htm
American Chemical Society (ACS). "Molecular 'superglue' based on flesh-eating bacteria." ScienceDaily. www.sciencedaily.com/releases/2013/04/130411105822.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins