Featured Research

from universities, journals, and other organizations

Enzymes from horse feces could hold secrets to streamlining biofuel production

Date:
April 11, 2013
Source:
American Chemical Society (ACS)
Summary:
Stepping into unexplored territory in efforts to use corn stalks, grass and other non-food plants to make biofuels, scientists have now described the discovery of a potential treasure-trove of candidate enzymes in fungi thriving in the feces and intestinal tracts of horses.

An anaerobic gut fungus from the digestive tract of a horse.
Credit: John K. Henske

Stepping into unexplored territory in efforts to use corn stalks, grass and other non-food plants to make biofuels, scientists have described the discovery of a potential treasure-trove of candidate enzymes in fungi thriving in the feces and intestinal tracts of horses.

They reported on these enzymes -- the key to economical production of biofuels from non-food plant material -- at the 245th National Meeting & Exposition of the American Chemical Society (ACS) currently going on in New Orleans.

Michelle A. O'Malley, Ph.D., explained that cellulose is the raw material for making biofuels from non-food plant materials. Cellulose, however, is sealed away inside a tough network of lignin within the cell walls of plants. To produce biofuels from these materials, lignin must be removed through an expensive pretreatment process. Then, a collection of enzymes breaks cellulose down into sugars. Finally, in a process much like production of beer or wine, those sugars become food for microbes to ferment into alcohol for fuel, ingredients for plastics and other materials.

"Nature has made it very difficult and expensive to access the cellulose in plants. Additionally, we need to find the best enzyme mixture to convert that cellulose into sugar," O'Malley said. "We have discovered a fungus from the digestive tract of a horse that addresses both issues -- it thrives on lignin-rich plants and converts these materials into sugars for the animal. It is a potential treasure trove of enzymes for solving this problem and reducing the cost of biofuels."

The digestive tracts of large herbivores like cows and horses, which can digest lignin-rich grasses, have been a well-trodden path for scientists seeking such enzymes. But in the past, their focus has been mainly on enzymes in bacteria, rather than fungi, which include yeasts and molds. The goal: Take the genes that produce such enzymes from gut fungi and genetically engineer them into yeasts. Yeasts already are used in time-tested processes on an industrial scale to produce huge quantities of antibiotics, foods and other products. That proven production technology would mean clear sailing for commercial production of biofuels.

O'Malley explained that several genes from gut fungi are unique compared to bacteria, since the fungi grow invasively into plant material. Also, they secrete powerful enzyme complexes that work together to break down cellulose. Until now, however, fungi have largely been ignored in the search for new biofuel enzymes -- and for good reason.

"There was relatively little scientific knowledge about fungi in the digestive tracts of these large animals," O'Malley explained. "They are there, but in very low numbers, making it difficult to study. The low concentrations also fostered a misconception that fungi must be unimportant in digestion of cellulose. And it is extremely difficult to isolate and grow these fungi to study their enzymes."

O'Malley's research group at the University of California, Santa Barbara, collaborated with researchers at the Broad Institute of the Massachusetts Institute of Technology and Harvard University. They worked with a gut fungus isolated from horse feces and identified all the genetic material that the fungus uses to manufacture enzymes and other proteins. This collection of protein-encoding material -- the fungus's so-called "transcriptome" -- led to the identification of literally hundreds of enzymes capable of breaking through that tough lignin in plant cell walls and the cellulose within. The team now is shifting through that bounty to identify the most active enzyme and working on methods for transferring the genetic machinery for its production into the yeast currently used in industrial processes.

The scientists acknowledged support from the United States Department of Agriculture, The Institute for Collaborative Biotechnologies through contract no. W911NF-09-D-0001 from the U.S. Army Research Office and the University of California, Santa Barbara.


Story Source:

The above story is based on materials provided by American Chemical Society (ACS). Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society (ACS). "Enzymes from horse feces could hold secrets to streamlining biofuel production." ScienceDaily. ScienceDaily, 11 April 2013. <www.sciencedaily.com/releases/2013/04/130411194641.htm>.
American Chemical Society (ACS). (2013, April 11). Enzymes from horse feces could hold secrets to streamlining biofuel production. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/04/130411194641.htm
American Chemical Society (ACS). "Enzymes from horse feces could hold secrets to streamlining biofuel production." ScienceDaily. www.sciencedaily.com/releases/2013/04/130411194641.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Rat Infestation at Paris' Tuileries Garden

Rat Infestation at Paris' Tuileries Garden

AFP (July 29, 2014) An infestation of rats is causing concern among tourists at Paris' most famous park -- the Tuileries garden next to the Louvre Museum. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins