Featured Research

from universities, journals, and other organizations

Saturn's youthful appearance explained

Date:
April 30, 2013
Source:
University of Exeter
Summary:
As planets age they become darker and cooler. Saturn, however, is much brighter than expected for a planet of its age -- a question that has puzzled scientists since the late 1960s. New research has revealed how Saturn keeps itself looking young and hot.

Saturn.
Credit: © NJ / Fotolia

As planets age they become darker and cooler. Saturn however is much brighter than expected for a planet of its age -- a question that has puzzled scientists since the late sixties. New research published in the journal Nature Geoscience has revealed how Saturn keeps itself looking young and hot.

Related Articles


Researchers from the University of Exeter and the Ecole Normale Supιrieure de Lyon found that layers of gas, generated by physical instability deep within the giant planet, prevent heat from escaping and have resulted in Saturn failing to cool down at the expected rate.

Professor Gilles Chabrier from Physics & Astronomy at the University of Exeter said: "Scientists have been wondering for years if Saturn was using an additional source of energy to look so bright but instead our calculations show that Saturn appears young because it can't cool down. Instead of heat being transported throughout the planet by large scale (convective) motions, as previously thought, it must be partly transferred by diffusion across different layers of gas inside Saturn. These separate layers effectively insulate the planet and prevent heat from radiating out efficiently. This keeps Saturn warm and bright."

Characterised by its distinctive rings, Saturn is one of the largest planets in our Solar System, second only in size to massive Jupiter. It is primarily made of hydrogen and helium and its excessive brightness has previously been attributed to helium rains, the result of helium failing to mix with Saturn's hydrogen rich atmosphere.

Layered convection, like that recently discovered in Saturn, has been observed in Earth's oceans where warm, salty water lies beneath cool and less salty water. The denser, salty water prevents vertical currents forming between the different layers and so heat cannot be transported efficiently upwards.

These findings suggest that the interior structure, composition and thermal evolution of giant planets in our Solar System, and beyond, may be much more complex than previously thought.


Story Source:

The above story is based on materials provided by University of Exeter. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jιrιmy Leconte, Gilles Chabrier. Layered convection as the origin of Saturn’s luminosity anomaly. Nature Geoscience, 2013; 6 (5): 347 DOI: 10.1038/ngeo1791

Cite This Page:

University of Exeter. "Saturn's youthful appearance explained." ScienceDaily. ScienceDaily, 30 April 2013. <www.sciencedaily.com/releases/2013/04/130430131525.htm>.
University of Exeter. (2013, April 30). Saturn's youthful appearance explained. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2013/04/130430131525.htm
University of Exeter. "Saturn's youthful appearance explained." ScienceDaily. www.sciencedaily.com/releases/2013/04/130430131525.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Space & Time News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) — Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) — Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Mars Rover Opportunity Celebrates 11-Year Anniversary

Mars Rover Opportunity Celebrates 11-Year Anniversary

Rumble (Jan. 26, 2015) — Eleven years ago NASA&apos;s Opportunity rover touched down on Mars for what was only supposed to be a 90-day mission. Since then it has traveled 25.9 miles (41.7 kilometers), further than any other off-Earth surface vehicle has ever driven. Credit to &apos;NASA&apos;. Video provided by Rumble
Powered by NewsLook.com
NASA's On Course To Take Pluto's Best Photo Ever

NASA's On Course To Take Pluto's Best Photo Ever

Newsy (Jan. 25, 2015) — NASA&apos;s New Horizons probe is en route to snap a picture of Pluto this summer, but making sure it doesn&apos;t miss its one chance to do so starts now. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins