Featured Research

from universities, journals, and other organizations

Saturn's youthful appearance explained

Date:
April 30, 2013
Source:
University of Exeter
Summary:
As planets age they become darker and cooler. Saturn, however, is much brighter than expected for a planet of its age -- a question that has puzzled scientists since the late 1960s. New research has revealed how Saturn keeps itself looking young and hot.

Saturn.
Credit: © NJ / Fotolia

As planets age they become darker and cooler. Saturn however is much brighter than expected for a planet of its age -- a question that has puzzled scientists since the late sixties. New research published in the journal Nature Geoscience has revealed how Saturn keeps itself looking young and hot.

Related Articles


Researchers from the University of Exeter and the Ecole Normale Supérieure de Lyon found that layers of gas, generated by physical instability deep within the giant planet, prevent heat from escaping and have resulted in Saturn failing to cool down at the expected rate.

Professor Gilles Chabrier from Physics & Astronomy at the University of Exeter said: "Scientists have been wondering for years if Saturn was using an additional source of energy to look so bright but instead our calculations show that Saturn appears young because it can't cool down. Instead of heat being transported throughout the planet by large scale (convective) motions, as previously thought, it must be partly transferred by diffusion across different layers of gas inside Saturn. These separate layers effectively insulate the planet and prevent heat from radiating out efficiently. This keeps Saturn warm and bright."

Characterised by its distinctive rings, Saturn is one of the largest planets in our Solar System, second only in size to massive Jupiter. It is primarily made of hydrogen and helium and its excessive brightness has previously been attributed to helium rains, the result of helium failing to mix with Saturn's hydrogen rich atmosphere.

Layered convection, like that recently discovered in Saturn, has been observed in Earth's oceans where warm, salty water lies beneath cool and less salty water. The denser, salty water prevents vertical currents forming between the different layers and so heat cannot be transported efficiently upwards.

These findings suggest that the interior structure, composition and thermal evolution of giant planets in our Solar System, and beyond, may be much more complex than previously thought.


Story Source:

The above story is based on materials provided by University of Exeter. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jérémy Leconte, Gilles Chabrier. Layered convection as the origin of Saturn’s luminosity anomaly. Nature Geoscience, 2013; 6 (5): 347 DOI: 10.1038/ngeo1791

Cite This Page:

University of Exeter. "Saturn's youthful appearance explained." ScienceDaily. ScienceDaily, 30 April 2013. <www.sciencedaily.com/releases/2013/04/130430131525.htm>.
University of Exeter. (2013, April 30). Saturn's youthful appearance explained. ScienceDaily. Retrieved March 4, 2015 from www.sciencedaily.com/releases/2013/04/130430131525.htm
University of Exeter. "Saturn's youthful appearance explained." ScienceDaily. www.sciencedaily.com/releases/2013/04/130430131525.htm (accessed March 4, 2015).

Share This


More From ScienceDaily



More Space & Time News

Wednesday, March 4, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: SpaceX Launches Rocket, Satellites on Board

Raw: SpaceX Launches Rocket, Satellites on Board

AP (Mar. 2, 2015) — SpaceX launched it&apos;s 16th Falcon 9 rocket from Cape Canaveral, Florida on Sunday night. The rocket was carrying two commercial communications satellites. (March 2) Video provided by AP
Powered by NewsLook.com
NASA EDGE: SMAP Launch

NASA EDGE: SMAP Launch

NASA (Mar. 2, 2015) — Join NASA EDGE as they cover the launch of the Soil Moisture Active Passive (SMAP) spacecraft live from Vandenberg Air Force Base.  Special guests include NASA Administrator Charlie Bolden, SMAP Project System Engineer Shawn Goodman and Lt Col Brande Walton and Joseph Sims from the Air Force.  No word on the Co-Host&apos;s whereabouts. Video provided by NASA
Powered by NewsLook.com
Astronauts Leave Space Station for Third Spacewalk

Astronauts Leave Space Station for Third Spacewalk

Reuters - News Video Online (Mar. 1, 2015) — NASA Commander Barry Wilmore and Flight Engineer Terry Virts perform their third spacewalk in eight days outside the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Spacesuit Water Leaks Not An Issue On Latest ISS Walk

Spacesuit Water Leaks Not An Issue On Latest ISS Walk

Newsy (Mar. 1, 2015) — Astronauts are ahead of schedule with hardware upgrades to the International Space Station, despite last week&apos;s spacesuit water leak scare. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins