Featured Research

from universities, journals, and other organizations

Diet likely changed game for some hominids 3.5 million years ago

Date:
June 3, 2013
Source:
University of Colorado at Boulder
Summary:
A new look at the diets of ancient African hominids shows a "game changer" occurred about 3.5 million years ago when some members added grasses or sedges to their menus, according to a new study.

This is an artist's representation of Paranthropus in southern Africa more than 1 million years ago.
Credit: Illustration courtesy ArchaeologyInfo.com/ScottBjelland

A new look at the diets of ancient African hominids shows a "game changer" occurred about 3.5 million years ago when some members added grasses or sedges to their menus, according to a new study led by the University of Colorado Boulder.

High-tech tests on tooth enamel by researchers indicate that prior to about 4 million years ago, Africa's hominids were eating essentially chimpanzee style, likely dining on fruits and some leaves, said CU-Boulder anthropology Professor Matt Sponheimer, lead study author. Despite the fact that grasses and sedges were readily available back then, the hominids seem to have ignored them for an extended period, he said.

"We don't know exactly what happened," said Sponheimer. "But we do know that after about 3.5 million years ago, some of these hominids started to eat things that they did not eat before, and it is quite possible that these changes in diet were an important step in becoming human."

A paper on the subject was published online by the Proceedings of the National Academy of Sciences the week of June 3, along with three related papers. Prior to the new PNAS studies, researchers had analyzed teeth from 87 ancient hominid specimens. The new PNAS papers provide detailed information on the teeth of 88 additional specimens, including five previously unanalyzed hominid species, doubling the dataset, he said.

Sponheimer specializes in stable isotope analysis, comparing particular forms of the same chemical element, like carbon, that are present in hominid fossil teeth. The stable carbon isotopes obtained from ancient hominids helps researchers determine what types of plants they were eating, he said.

Carbon signals from hominid teeth are derived from two distinct plant photosynthetic pathways, said Sponheimer: The C3 signals are from plants like trees and bushes, while the C4 signals are from plants like grasses and sedges. The researchers also looked at the microscopic wear of hominid teeth, which provides scientists with more information on the foods they were eating, he said.

While the hominids from the genus Homo that evolved from australopithecines like the 3 million-year-old fossil Lucy -- considered by many the matriarch of modern humans -- were broadening their food choices, a short, upright hominid known as Paranthropus boisei that lived side by side with them in eastern Africa was diverging toward a more specific, C4 diet. Scientists initially had dubbed P. boisei "Nutcracker Man" because of its large, flat teeth and powerful jaws, but recent analyses indicate it might have instead used its back teeth to grind grasses and sedges, Sponheimer said.

"We now have the first direct evidence that as the cheek teeth on hominids got bigger, their consumption of plants like grasses and sedges increased," he said. "We also see niche differentiation between Homo and Paranthropus -- it looks probable that Paranthropus boisei had a relatively restricted diet, while members of the genus Homo were eating a wider variety of things. "The genus Paranthropus went extinct about 1 million years ago, while the genus Homo that includes us obviously did not."

There are some differences in the evolution of hominids in eastern Africa versus southern Africa that still puzzle researchers, said Sponheimer. Paranthropus robustus in southern Africa, for example, was very similar anatomically to its cousin, P. boisei in eastern Africa. But according to the new study, the two had very different carbon isotopic compositions in their teeth and, presumably, diets -- P. robustus seems to have been consuming a substantial amount of C3 vegetation to go along with the C4 grasses or sedges it was eating.

"This has probably been one of the biggest surprises to us so far," said Sponheimer. "We had generally assumed that the Paranthropus species were just variants on the same ecological theme, and that their diets would probably not differ more than those of two closely related monkeys in the same forest.

"But we found that their diets differed as much isotopically as those of forest chimpanzees and savanna baboons, which could indicate their diets were about as different as primate diets can be," he said. "Ancient fossils don't always reveal what we think they will. The upside of this disconnect is that it can teach us a great deal, including the need for caution in making pronouncements about the diets of long-dead critters."

Anthropologists are still pondering what the new data mean in terms of hominid evolution, climate change and changes in the environment, he said. Scientists are particularly interested in the landscapes back then, and whether different geography and/or ecosystems might have impeded or encouraged the dispersal of hominids.

"Isotopes are a great tool for tracking the origin of carbon, but they don't tell the whole story," said Sponheimer. "We would still like to know what specific foods were consumed by the various hominids living several million years ago -- including their mechanical and nutritional properties -- and how such foods might have influenced hominid anatomy over time.

"What we have done to this point is pick the low-hanging fruit, and we've been most successful in determining what various hominids did not eat," said Sponheimer. "But from here on out, we can't expect any easy answers."


Story Source:

The above story is based on materials provided by University of Colorado at Boulder. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matt Sponheimer, Zeresenay Alemseged, Thure E. Cerling, Frederick E. Grine, William H. Kimbel, Meave G. Leakey, Julia A. Lee-Thorp, Fredrick Kyalo Manthi, Kaye E. Reed, Bernard A. Wood, and Jonathan G. Wynn. Isotopic evidence of early hominin diets. PNAS, June 3, 2013 DOI: 10.1073/pnas.1222579110

Cite This Page:

University of Colorado at Boulder. "Diet likely changed game for some hominids 3.5 million years ago." ScienceDaily. ScienceDaily, 3 June 2013. <www.sciencedaily.com/releases/2013/06/130603164140.htm>.
University of Colorado at Boulder. (2013, June 3). Diet likely changed game for some hominids 3.5 million years ago. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2013/06/130603164140.htm
University of Colorado at Boulder. "Diet likely changed game for some hominids 3.5 million years ago." ScienceDaily. www.sciencedaily.com/releases/2013/06/130603164140.htm (accessed September 17, 2014).

Share This



More Fossils & Ruins News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) — Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Museum Traces Fragments of Star-Spangled Banner

Museum Traces Fragments of Star-Spangled Banner

AP (Sep. 12, 2014) — As the Star-Spangled Banner celebrates its bicentennial, Smithsonian curators are still uncovering fragments of the original flag that inspired Francis Scott Key's poem. (Sept. 12) Video provided by AP
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) — New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com
Meet Spinosaurus, the First-Known Water Dinosaur

Meet Spinosaurus, the First-Known Water Dinosaur

AFP (Sep. 11, 2014) — Spinosaurus aegyptiacus was adapted for both land and water, and an exhibit featuring a life-sized model, based on new fossils unearthed in eastern Morocco, opens at the National Geographic Museum in Washington on Friday. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


A Grassy Trend in Human Ancestors' Diets

June 3, 2013 — Most apes eat leaves and fruits from trees and shrubs. New studies show that human ancestors expanded their menu 3.5 million years ago, adding tropical grasses and sedges to an ape-like diet and ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins