Featured Research

from universities, journals, and other organizations

Fractal patterns spontaneously emerge during bacterial cell growth

Date:
June 11, 2013
Source:
University of Cambridge
Summary:
Despite bacterial colonies always forming circular shapes as they grow, their cells form internal divisions which are highly asymmetrical and branched. These fractal (self-similar) patterns are due to the physical forces and local instabilities that are a natural part of bacterial cell growth, a new study reveals. The research has important implications for the emerging field of synthetic biology.

Using a combination of genetic, microscopy and computational tools, Cambridge scientists created a system for examining the development of multicellular bacterial populations. After marking bacteria by inserting genes for different coloured proteins, the researchers used high resolution microscopes to examine the growth of bacterial populations in detail. They discovered that as bacteria grow the cell populations naturally form striking and unexpected branching patterns called fractals.
Credit: Jim Haseloff Lab

Scientists have discovered highly asymmetric and branched patterns are the result of physical forces and local instabilities. The research has important implications for understanding biofilms and multicellular systems.

Related Articles


Despite bacterial colonies always forming circular shapes as they grow, their cells form internal divisions which are highly asymmetrical and branched. These fractal (self-similar) patterns are due to the physical forces and local instabilities that are a natural part of bacterial cell growth, a new study reveals. The research, published in the scientific journal ACS Synthetic Biology, has important implications for the emerging field of synthetic biology.

Using a combination of genetic, microscopy and computational tools, Cambridge scientists created a system for examining the development of multicellular bacterial populations. After marking bacteria by inserting genes for different coloured proteins, the researchers used high resolution microscopes to examine the growth of bacterial populations in detail. They discovered that as bacteria grow the cell populations naturally form striking and unexpected branching patterns called fractals. The scientists then used large-scale computer models to explore the patterning process.

They showed that as each bacterium grows in a single direction, lines or files of cells are formed, but these files are unstable to small disturbances. As large numbers of cells push and shove against each other, mechanical instability leads to buckling and folding of cell files. This is repeated as the cells continue to grow and divide, leading to the formation of rafts of aligned cells arranged in self-similar branching patterns, or fractals.

These microscopic fractal patterns emerge spontaneously from physical interactions between the large number of cells within the population. This was tested by looking at the interactions between twin cell populations and a mutant bacterium that has a round shape (where this behaviour is not observed).

Dr Jim Haseloff, from the Department of Plant Sciences at the University of Cambridge and lead author of the study, said: "Vivid biological patterns emerge from even subtle interactions. Similar phenomena are seen in the emergence of order in economic, social and political systems.

"The behaviour of large populations can be hard to predict, but the work has resulted in the validation of fast and accurate computer models that provide a test bed for reprogramming of multicellular systems."

Synthetic Biology is a new field that brings engineering principles to biology to reprogram living systems using DNA. It is has the potential to create a new generation of sustainable technologies, with the prospect of new forms of materials and energy produced by biological feedstocks and recycling of waste. As synthetic biologists are starting to reprogram the behaviour of large populations of cells in order to explore new forms of self-organisation and function, this study will have important implications for their research.

Dr Haseloff added: "This is an experimental system that can capture the physics, cellularity and genetics of growth in a simple system -- and which allows a new type of 'emergence in a test-tube' approach.

"Also, it provides a new insight into the way cell populations may interact during the early formation of medically important bacterial populations or biofilms, and produce irregular boundaries for invasive growth and increased surface contact. This could have important implications for understanding the formation of these biofilms, and for engineering new biofilms in biotechnology."


Story Source:

The above story is based on materials provided by University of Cambridge. The original story is licensed under a Creative Commons License. Note: Materials may be edited for content and length.


Journal Reference:

  1. Timothy J. Rudge, Fernαn Federici, Paul J. Steiner, Anton Kan, Jim Haseloff. Cell Polarity-Driven Instability Generates Self-Organized, Fractal Patterning of Cell Layers. ACS Synthetic Biology, 2013; 130603150853004 DOI: 10.1021/sb400030p

Cite This Page:

University of Cambridge. "Fractal patterns spontaneously emerge during bacterial cell growth." ScienceDaily. ScienceDaily, 11 June 2013. <www.sciencedaily.com/releases/2013/06/130611084115.htm>.
University of Cambridge. (2013, June 11). Fractal patterns spontaneously emerge during bacterial cell growth. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2013/06/130611084115.htm
University of Cambridge. "Fractal patterns spontaneously emerge during bacterial cell growth." ScienceDaily. www.sciencedaily.com/releases/2013/06/130611084115.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) — The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) — Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins