Featured Research

from universities, journals, and other organizations

Understanding bulls' gene-rich Y chromosomes may improve herd fertility

Date:
July 11, 2013
Source:
Penn State
Summary:
The Y chromosomes of cattle have more genes and are more active than the Y chromosomes of other primates, according to researchers.

This image shows a head shot of a bull.
Credit: Patrick Mansell, Penn State

The Y chromosomes of cattle have more genes and are more active than the Y chromosomes of other primates, according to researchers.

Related Articles


This discovery may help biologists better understand how cattle and other mammals evolved, as well as help animal breeders and farmers better maintain and enhance fertility in the cattle industry, said Wansheng Liu, associate professor of animal genomics, Penn State.

"Low fertility is a big problem for the dairy and beef industry," Liu said. "In the past 60 years, we paid more attention to milk, or beef production as a sign of herd success, but, even as milk production goes up, the animal's fertility goes down, which means it's time to pay more attention to male fertility now."

The researchers identified 1,274 genes in the male specific region of the bovine Y chromosome, compared to the 31 to 78 genes associated in the Y chromosomes of various primates. They also said the genes in the bovine Y chromosome were much more transcriptionally active compared to other mammals. Transcription is the first step of gene expression when DNA is copied. In this process, the cell produces messenger RNA that copies the genetic information from the cell nucleus to serve as a template for protein synthesis.

In addition to the 1,274 genes that take part in coding proteins, they also identified 375 novel noncoding gene families on the bovine Y chromosome, which are predominantly expressed in different stages of the testis.

Most researchers believed that the Y chromosome of cattle would be similar to the Y chromosome of other mammals, which does not have a large number of genes and is considered mostly transcriptionally inactive, Liu said. The Y chromosome, which was once similar to the X chromosome, evolved predominantly for testis development and male fertility, he added.

Currently, the gene content and transcription pattern of the bovine Y chromosome is the only non-primate Y chromosome that researchers have studied in depth, according to Liu.

"These findings directly contradict the traditional view that the Y is largely heterochromatic with a paucity of genes and transcription activity," said the researchers, who released their findings in the current online issue of Proceedings of the National Academy of Sciences.

The X and Y sex chromosome in most mammals began to diverge after 160 million years of evolution. However, genetic isolation and lineage-specific evolution resulted in the unique structure of the bovine Y chromosome, which determines the gene content and transcriptional activity of the Y chromosome among cattle, according to Liu.

With little knowledge of the roles that the Y chromosome genes play in fertility, most animal breeders and farmers select bulls based on physical characteristics, such as the size of the testis. Because the Y chromosome is present in males only, the Y-linked testis genes that govern male fertility are passed directly through the male line.

Understanding genetic diversity may give farmers another tool for managing their herds to improve male fertility, Liu said. The lineage of most of the bulls in current Holstein herds, for example, can be traced back over a hundred years to just a few bulls, said Liu, who worked with Ti-Cheng Chang and Yang Yang, both former post-doctoral fellows in animal science at Penn State, and the late Ernest Retzel, National Center for Genome Resources.

The potential impact of a limited number of bulls on fertility and the surviving of the breed as not been investigated.

"We can begin to understand the Y chromosome variation among male lineages in a cattle breed," Liu said. "And, also, we can better understand how we can maintain genetic diversity in males, particularly in a breed, such as Holsteins, that has been extensively selected and is almost all based on artificial insemination in reproduction."

The researchers analyzed the expression of the entire Y-linked genes as the bull aged, beginning soon after the bull's birth, during puberty and then again after the bull matured. They analyzed complementary DNA from the bull testis. Complementary DNA is a form of DNA that is synthesized from a messenger RNA template

"The bovine genome sequence was published in 2009," said Liu. "As that genome sequence was from a female, the findings of the bovine Y chromosome study is a significant contribution to the completion of the bovine -- male and female -- genome project." The United States Department of Agriculture supported this work.


Story Source:

The above story is based on materials provided by Penn State. The original article was written by Matthew Swayne. Note: Materials may be edited for content and length.


Journal Reference:

  1. T.-C. Chang, Y. Yang, E. F. Retzel, W.-S. Liu. Male-specific region of the bovine Y chromosome is gene rich with a high transcriptomic activity in testis development. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1221104110

Cite This Page:

Penn State. "Understanding bulls' gene-rich Y chromosomes may improve herd fertility." ScienceDaily. ScienceDaily, 11 July 2013. <www.sciencedaily.com/releases/2013/07/130711135321.htm>.
Penn State. (2013, July 11). Understanding bulls' gene-rich Y chromosomes may improve herd fertility. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/07/130711135321.htm
Penn State. "Understanding bulls' gene-rich Y chromosomes may improve herd fertility." ScienceDaily. www.sciencedaily.com/releases/2013/07/130711135321.htm (accessed October 24, 2014).

Share This



More Plants & Animals News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins