Science News

... from universities, journals, and other research organizations

Great Exaptations: Most Traits Emerge for No Crucial Reason, Scientists Find

July 15, 2013 — Exactly how new traits emerge is a question that has long puzzled evolutionary biologists. While some adaptations develop to address a specific need, others (called "exaptations") develop as a by-product of another feature with minor or no function, and may acquire more or greater uses later. Feathers, for example, did not originate for flight but may have helped insulate or waterproof dinosaurs before helping birds fly.


Share This:

How common such pre-adaptive traits are in relation to adaptive traits is unclear. Santa Fe Institute External Professor Andreas Wagner and colleague Aditya Barve, both evolutionary biologists at the University of Zurich, decided to get a systematic handle on how traits originate by studying all the chemical reactions taking place in an organism's metabolism.

Starting with the metabolism of an E. coli that can survive on glucose as its sole carbon source, they subjected the complex metabolic chemical process to a "random walk" through the set of all possible metabolisms, adding one reaction and deleting another from it with each step. They kept constant the total number of reactions and the bacterium's ability to survive on glucose alone, but allowed everything else to change. Every few thousand steps they analyzed the altered metabolism's reactions.

They found that most metabolisms were viable on about five other carbon sources -- sugars, building blocks of DNA or RNA, or proteins -- that are naturally common but chemically distinct compounds. To be certain that viability on these other carbon sources wasn't a natural consequence of viability on glucose, they tested metabolisms starting with viability on 49 other carbon sources, and each time found that exaptations emerged allowing the metabolism to survive on any one of several other carbon sources alone.

"We observed an incredible abundance of viability on carbon sources that these metabolisms were never even required to use," Wagner says.

By varying the number of reactions in a metabolic system, the team also found a relationship between the system's complexity (determined by number of reactions) and the extent of the exaptations, with larger networks having more of them.

The findings underscore the idea that traits we see now -- even complex ones, like color vision -- may have had neutral origins that sat latent for generations before spreading through populations, Wagner says.

"Our work shows that exaptations exceed adaptations several-fold," he says.

If exaptations are pervasive in evolution, he adds, it becomes difficult to distinguish adaptation from exaptation, and it could change the way evolutionary biologists think about selective advantage as the primary driver of natural selection.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by Santa Fe Institute.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Aditya Barve, Andreas Wagner. A latent capacity for evolutionary innovation through exaptation in metabolic systems. Nature, 2013; DOI: 10.1038/nature12301
APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,678

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Doggy Genes

Molecular biologists have completely sequenced the first dog genome. Understanding how genetics plays a role in canine diseases could lead to new. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?