Featured Research

from universities, journals, and other organizations

Watching the production of new proteins in live cells

Date:
August 26, 2013
Source:
Columbia University
Summary:
Researchers have made a significant step in understanding and imaging protein synthesis, pinpointing exactly where and when cells produce new proteins. They have developed a new technique to produce high-resolution imaging of newly synthesized proteins inside living cells.

This image shows stimulated Raman scattering imaging of newly synthesized protein in live hippocampal neurons incubated in a deuterium-labeled amino acids medium for 20 hours by targeting the unique 2,133 cm_1 vibrational peak of C-D stretching.
Credit: Lu Wei, Columbia University

Researchers at Columbia University, in collaboration with biologists in Baylor College of Medicine, have made a significant step in understanding and imaging protein synthesis, pinpointing exactly where and when cells produce new proteins. Assistant Professor Wei Min's team developed a new technique to produce high-resolution imaging of newly synthesized proteins inside living cells.

The findings were published in the July 9th issue of The Proceedings of the National Academy of Sciences.

Proteins carry out almost every crucial biological function. Synthesis of new proteins is a key step in gene expression and is a major process by which cells respond rapidly to environmental cues in physiological and pathological conditions, such as cancer, autism and oxidative stress. A cell's proteome (i.e., the sum of all the cell's proteins) is highly dynamic and tightly regulated by both protein synthesis and disposal to maintain homeostasis and ensure normal functioning of the body. Many intricate biological processes, such as cell growth, differentiation and diseases, involve new protein synthesis at a specific location and time. In particular, long-lasting neuronal plasticity (changes in neural pathways and synapses that come from alterations in behavior, environment and bodily injury), such as those underlying learning and long-term memory, require new protein synthesis in a site- and time- dependent manner inside neurons.

Min and colleagues' new technique harnesses deuterium (a heavier cousin of the normal hydrogen atom), which was first discovered by Harold Urey in 1932, also at Columbia University. When hydrogen is replaced by deuterium, the biochemical activities of amino acids change very little. When added to growth media for culturing cells, these deuterium-labeled amino acids are incorporated by the natural cell machineries as the necessary building blocks for new protein production. Hence, only newly synthesized proteins by living cells will carry the special deuterium atoms connected to carbon atoms. The carbon-deuterium bonds vibrate at a distinct frequency, different from almost all natural chemical bonds existing inside cells.

The Columbia team utilized an emerging technique called stimulated Raman scattering (SRS) microscopy to target the unique vibrational motion of carbon-deuterium bonds carried by the newly synthesized proteins. They found that by quickly scanning a focused laser spot across the sample, point-by-point, SRS microscopy is capable of delivering location-dependent concentration maps of carbon-deuterium bonds inside living cells.

"Incorporation of deuterium-labeled amino acids to new proteins is minimally disruptive, and their biochemical properties are almost identical to their natural counterparts," says Lu Wei, the lead author of the paper. "Our technique is highly sensitive, specific, and compatible with living systems under physiological conditions that don't require killing cells or staining."

Prior to this discovery, the ability to observe protein synthesis in living cells had eluded scientists, who devoted extensive efforts to achieving this goal. A classic strategy that involves labeling amino acids with radioisotopes to trace and quantify proteome dynamics requires the samples be killed and exposed to films. Fluorescence microscopy, another popular method, takes advantage of the inherent glowing of green fluorescent protein (GFP) to follow a protein. While this process does work on individual proteins, scientists can't observe the cell's entire proteome. A third technique, bioorthogonal noncanonical amino acid tagging (BONCAT) metabolically incorporates unnatural (biosynthetic) amino acids containing reactive chemical groups. However, the method generally requires killing cells and subsequent dye staining, a process that presents an issue for live tissues and animals. Therefore, it is extremely challenging and desirable to quantitatively image proteome synthesis in living cells, tissues and animals with high resolution. Min's research opens the door for a new method to study living cells, presenting opportunities to understand previously unanswered questions about the behavior of cells as they perform their functions.

The next step for Min's team is to capture where and when a new protein is produced inside brain tissues when an animal is subject to various lab exercises to form long-term memory. "Our new technique will greatly facilitate understanding the molecular mechanisms of many complex behaviors such as learning and diseases," he says.


Story Source:

The above story is based on materials provided by Columbia University. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Wei, Y. Yu, Y. Shen, M. C. Wang, W. Min. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences, 2013; 110 (28): 11226 DOI: 10.1073/pnas.1303768110

Cite This Page:

Columbia University. "Watching the production of new proteins in live cells." ScienceDaily. ScienceDaily, 26 August 2013. <www.sciencedaily.com/releases/2013/08/130826183116.htm>.
Columbia University. (2013, August 26). Watching the production of new proteins in live cells. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2013/08/130826183116.htm
Columbia University. "Watching the production of new proteins in live cells." ScienceDaily. www.sciencedaily.com/releases/2013/08/130826183116.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins