Featured Research

from universities, journals, and other organizations

Mosquitoes smell you better at night

Date:
August 30, 2013
Source:
University of Notre Dame
Summary:
The major malaria vector in Africa, the Anopheles gambiae mosquito, is able to smell major human host odorants better at night.

In work published this week in Nature: Scientific Reports, a team of researchers from the University of Notre Dame's Eck Institute for Global Health, led by Associate Professor Giles Duffield and Assistant Professor Zain Syed of the Department of Biological Sciences, revealed that the major malaria vector in Africa, the Anopheles gambiae mosquito, is able to smell major human host odorants better at night.

The study reports an integrative approach to examine the mosquito's ability to smell across the 24-hour day and involved proteomic, sensory physiological, and behavioral techniques. The researchers examined the role for a major chemosensory family of mosquito proteins, odorant-binding proteins (OBPs), in the daily regulation of olfactory sensitivities in the malarial mosquito. It is thought that OBPs in the insect antennae and mouth parts function to concentrate odorant molecules and assist in their transport to the actual olfactory receptors, thereby allowing for odorant detection. The team revealed daily rhythmic protein abundance of OBPs, having higher concentrations in the mosquito's sensory organs at night than during the day. This discovery could change the way we look at protecting ourselves from these disease-carrying pests.

The team also included Matthew M. Champion, Eck Institute for Global Health Research Assistant Professor in the Department of Chemistry and Biochemistry, who specializes in proteomics.

This study utilized mass spectrometry to quantify protein abundance in mosquito sensory organs, and electroantennograms to determine the response induced by host odorants at different times of the day. The coincident times of peak protein abundance, olfactory sensitivity and biting behavior reflect the extraordinarily fine-tuned control of mosquito physiology. Olfactory protein abundance and olfactory sensitivity are high when needed (at night) and low when not required (daytime).

Samuel Rund, a doctoral candidate in the laboratory of Duffield and a former Eck Institute for Global Health Fellow, and Nicolle Bonar, a visiting undergraduate student from Queens University of Ontario, Canada, were the lead authors on this research. The Notre Dame team also included then-undergraduate student John Ghazi, Class of 2012; undergraduate Cameron Houk, Class of '14; and graduate student Matthew Leming.

Rund noted, "This was an exciting opportunity to bring many people and techniques together to make some really fascinating findings on the mosquito's ability to smell humans, its host. Just think, during the day the mosquito is sleeping and doesn't need to smell you. But when the sun goes down, the mosquito's olfactory system becomes extra-sensitive, and she is ready to smell and then bite you."

The project was a follow-up to their earlier work that utilized genomic tools to reveal 24-hour rhythmic patterns of gene expression, including many genes involved in olfaction.

Rund and Duffield's earlier work with collaborator James Gentile from Notre Dame's Department of Computer Science and Engineering, "Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae," helped lay some of the foundation to their findings. The paper, published in BMC Genomics in April, further examined the regulation of rhythms in gene expression at the molecular level, highlighted important differences in biological timing between Anopheles gambiae and the important dengue vector, Aedes aegypti, and highlighted the important role of light in organizing and modifying gene expression.

Anopheles gambiae is the primary species that is responsible for the transmission of malaria in sub-Saharan Africa, with approximately 300 million infections and 1 million deaths annually. The fact that these studies were conducted in Anopheles gambiae mosquitoes has important implications for the development of novel insect control methods with the potential to reduce the transmission of malaria parasites and thus the morbidity and mortality associated with malaria disease. This work provides the first comprehensive evidence of the important role of daily rhythms in the sensory biology of Anopheles gambiae and the implications for developing new control methods.


Story Source:

The above story is based on materials provided by University of Notre Dame. The original article was written by Sarah Craig. Note: Materials may be edited for content and length.


Journal Reference:

  1. Samuel S. C. Rund, Nicolle A. Bonar, Matthew M. Champion, John P. Ghazi, Cameron M. Houk, Matthew T. Leming, Zainulabeuddin Syed, Giles E. Duffield. Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Scientific Reports, 2013; 3 DOI: 10.1038/srep02494

Cite This Page:

University of Notre Dame. "Mosquitoes smell you better at night." ScienceDaily. ScienceDaily, 30 August 2013. <www.sciencedaily.com/releases/2013/08/130830161326.htm>.
University of Notre Dame. (2013, August 30). Mosquitoes smell you better at night. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/08/130830161326.htm
University of Notre Dame. "Mosquitoes smell you better at night." ScienceDaily. www.sciencedaily.com/releases/2013/08/130830161326.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins