Featured Research

from universities, journals, and other organizations

How to map cell-signaling molecules to their targets

Date:
September 9, 2013
Source:
McGill University
Summary:
A team of researchers has devised a method to identify how signaling molecules orchestrate the sequential steps in cell division.

A mitotic spindle hub (the orange and grey hub-and-spoke structure) primed by Cdk-Clb3 signaling (red).
Credit: Conrad Hall, McGill University

A team of University of Montreal and McGill University researchers has devised a method to identify how signaling molecules orchestrate the sequential steps in cell division. In an article published online in the Proceedings of the National Academy of Sciences, the scientists explain how they could track the relationship between signaling molecules and their target molecules to establish where, when and how the targets are deployed to perform the many steps necessary to replicate an individual cell’s genome and surrounding structures.

Breakdowns in individual steps in these processes are a hallmark of a number of diseases, including cancers. The method outlined in the PNAS paper could provide a valuable tool to researchers seeking to better understand these processes.

“How living cells divide and how this process is accurately achieved are among the deepest questions scientists have been addressing for decades,” said Dr. Stephen Michnick, co-senior investigator and a University of Montreal biochemistry professor. Co-senior investigator Jackie Vogel, a biology professor at McGill, said, “We know what are the main players in cell division – molecules called cyclins and a common actuator molecule called Cdk1 – but it has proved a vexing problem to figure out precisely how the cyclin-Cdk1 partners deploy target molecules to orchestrate everything that must happen and in precisely the right order to assure accurate cell division.”

The University of Montreal and McGill team worked out a method to identify interactions between cyclin-Cdk1 (cyclin-dependent kinase 1) complexes and their targets in living cells. Cdk1 is a signaling protein that plays a key role in cell division – it has been studied extensively in yeast, because of yeast’s rapid reproduction, and is found in many other living organisms including humans. “It is a simple method that could be performed in any laboratory, unlike existing methods that are much more labor- and skill-intensive,” said Dr. Michnick.

“The method also picks up cyclin-Cdk1 interactions that traditional methods don’t,” added Dr. Vogel. “For instance, we study the assembly of a massive molecular machine called the mitotic spindle, a structure that orchestrates the coordinated separation of two copies of the genome between the two new cells that emerge from division. We’d been chasing, for over a decade, an elusive link between a specific cyclin called Clb3-Cdk1 complex and a spindle target called gamma-tubulin that we thought could be a key step in building mitotic spindles accurately. All evidence pointed to this interaction, including a massive effort I was involved in to map out cellular communication directed to the centrosome, a molecular machine that organizes assembly of the mitotic spindle. So we teamed up with Dr. Michnick to try the new method and out popped the Clb3-Cdk1-gamma tubulin interaction -- just like that.” Now, in collaboration with Paul Franηois, a physics professor at McGill, the researchers have been able to use this information to show that the Clb3-Cdk1-gamma-tubulin interaction controls a massive remodeling of the mitotic spindle.

“The tool that we’ve developed will be available to the scientific community and concerted efforts by many labs may ultimately unlock the mysteries of one of life’s most essential processes,” said Dr. Michnick.


Story Source:

The above story is based on materials provided by McGill University. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. H. Ear, M. J. Booth, D. Abd-Rabbo, J. Kowarzyk Moreno, C. Hall, D. Chen, J. Vogel, S. W. Michnick. Dissection of Cdk1-cyclin complexes in vivo. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1305420110

Cite This Page:

McGill University. "How to map cell-signaling molecules to their targets." ScienceDaily. ScienceDaily, 9 September 2013. <www.sciencedaily.com/releases/2013/09/130909162341.htm>.
McGill University. (2013, September 9). How to map cell-signaling molecules to their targets. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/09/130909162341.htm
McGill University. "How to map cell-signaling molecules to their targets." ScienceDaily. www.sciencedaily.com/releases/2013/09/130909162341.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) — The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins