Featured Research

from universities, journals, and other organizations

How to map cell-signaling molecules to their targets

Date:
September 9, 2013
Source:
McGill University
Summary:
A team of researchers has devised a method to identify how signaling molecules orchestrate the sequential steps in cell division.

A mitotic spindle hub (the orange and grey hub-and-spoke structure) primed by Cdk-Clb3 signaling (red).
Credit: Conrad Hall, McGill University

A team of University of Montreal and McGill University researchers has devised a method to identify how signaling molecules orchestrate the sequential steps in cell division. In an article published online in the Proceedings of the National Academy of Sciences, the scientists explain how they could track the relationship between signaling molecules and their target molecules to establish where, when and how the targets are deployed to perform the many steps necessary to replicate an individual cell’s genome and surrounding structures.

Breakdowns in individual steps in these processes are a hallmark of a number of diseases, including cancers. The method outlined in the PNAS paper could provide a valuable tool to researchers seeking to better understand these processes.

“How living cells divide and how this process is accurately achieved are among the deepest questions scientists have been addressing for decades,” said Dr. Stephen Michnick, co-senior investigator and a University of Montreal biochemistry professor. Co-senior investigator Jackie Vogel, a biology professor at McGill, said, “We know what are the main players in cell division – molecules called cyclins and a common actuator molecule called Cdk1 – but it has proved a vexing problem to figure out precisely how the cyclin-Cdk1 partners deploy target molecules to orchestrate everything that must happen and in precisely the right order to assure accurate cell division.”

The University of Montreal and McGill team worked out a method to identify interactions between cyclin-Cdk1 (cyclin-dependent kinase 1) complexes and their targets in living cells. Cdk1 is a signaling protein that plays a key role in cell division – it has been studied extensively in yeast, because of yeast’s rapid reproduction, and is found in many other living organisms including humans. “It is a simple method that could be performed in any laboratory, unlike existing methods that are much more labor- and skill-intensive,” said Dr. Michnick.

“The method also picks up cyclin-Cdk1 interactions that traditional methods don’t,” added Dr. Vogel. “For instance, we study the assembly of a massive molecular machine called the mitotic spindle, a structure that orchestrates the coordinated separation of two copies of the genome between the two new cells that emerge from division. We’d been chasing, for over a decade, an elusive link between a specific cyclin called Clb3-Cdk1 complex and a spindle target called gamma-tubulin that we thought could be a key step in building mitotic spindles accurately. All evidence pointed to this interaction, including a massive effort I was involved in to map out cellular communication directed to the centrosome, a molecular machine that organizes assembly of the mitotic spindle. So we teamed up with Dr. Michnick to try the new method and out popped the Clb3-Cdk1-gamma tubulin interaction -- just like that.” Now, in collaboration with Paul Franηois, a physics professor at McGill, the researchers have been able to use this information to show that the Clb3-Cdk1-gamma-tubulin interaction controls a massive remodeling of the mitotic spindle.

“The tool that we’ve developed will be available to the scientific community and concerted efforts by many labs may ultimately unlock the mysteries of one of life’s most essential processes,” said Dr. Michnick.


Story Source:

The above story is based on materials provided by McGill University. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. H. Ear, M. J. Booth, D. Abd-Rabbo, J. Kowarzyk Moreno, C. Hall, D. Chen, J. Vogel, S. W. Michnick. Dissection of Cdk1-cyclin complexes in vivo. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1305420110

Cite This Page:

McGill University. "How to map cell-signaling molecules to their targets." ScienceDaily. ScienceDaily, 9 September 2013. <www.sciencedaily.com/releases/2013/09/130909162341.htm>.
McGill University. (2013, September 9). How to map cell-signaling molecules to their targets. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2013/09/130909162341.htm
McGill University. "How to map cell-signaling molecules to their targets." ScienceDaily. www.sciencedaily.com/releases/2013/09/130909162341.htm (accessed September 20, 2014).

Share This



More Plants & Animals News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) — Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) — A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) — Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins