Featured Research

from universities, journals, and other organizations

New role for protein family could provide path to how crop traits are modified

Date:
September 18, 2013
Source:
Indiana University
Summary:
Pioneering new research has shown for the first time that a protein which has been long known to be critical for the initiation of protein synthesis in all organisms can also play a role in the regulation of gene expression in some bacteria, and probably land plants as well.

Fluorescence micrograph of a mutant of the filamentous cyanobacterium Fremyella diplosiphon showing the autofluorescence that results from the overaccumulation of the photosynthetic pigment phycoerythrin. This phenotype can result from the deletion of the gene encoding a translation initiation factor 3.
Credit: Photo by Xin Zhang and Lina Li

Pioneering new research from a team of Indiana University Bloomington biologists has shown for the first time that a protein which has been long known to be critical for the initiation of protein synthesis in all organisms can also play a role in the regulation of gene expression in some bacteria, and probably land plants as well.

Related Articles


The protein, called translation initiation factor 3, or IF3, is one of three proteins that make up the core structure of the machinery needed to guide the joining of messenger RNAs and ribosomes as protein translation commences. These three proteins have been widely considered to simply operate in a constitutive manner and play little, if any, role in regulating the expression of genes.

The new findings, from the laboratory of David M. Kehoe, professor of biology in the Indiana University Bloomington College of Arts and Sciences, reveals that IF3, in addition to its well-accepted function during translation initiation, also regulates the expression of genes that encode components of the photosynthetic machinery in response to changes in the color of light in the surrounding environment, a process known as "chromatic acclimation."

These photosynthesis genes produce red-pigmented proteins called phycoerythrin in cyanobacteria when the cells are grown in green light and allow these organisms to efficiently absorb the predominant ambient light color for photosynthesis. The team uncovered the novel function of IF3 while searching for mutants that incorrectly regulated phycoerythrin. The discovery of this mutant was at first surprising, because in all other bacteria that have been examined, mutations in infC (the gene that encodes IF3) are lethal.

The team solved this puzzle by uncovering a second infC gene in Fremyella diplosiphon, the model organism for the study of light color responsiveness in cyanobacteria. While both IF3s, which have been named IF3a and IF3b, can act in the traditional role of translation initiation, only IF3a was found to also regulate photosynthetic gene expression.

By exploring the genomes of hundreds of prokaryotes and eukaryotes in collaboration with members of the laboratory of Indiana University Distinguished Professor and Class of 1955 Professor Jeffrey Palmer, the group identified a wide range of species whose genomes appear to have the potential to encode multiple IF3s, with one organism apparently encoding five distinct IF3 family members. And since almost none of these species are capable of chromatic acclimation, Kehoe believes that multiple IF3s must be used to regulate a wide range of environmental and perhaps developmental responses in both prokaryotes and eukaryotes.

"Particularly interesting was our finding that IF3 families exist in a number of plant species, including commercially important crops," Kehoe said. "This means that new approaches to the modification of traits in agriculturally significant plant species may be possible by manipulating the expression patterns of different IF3 family members."

The discovery has generated excitement for an additional reason. Historically, scientists have had a difficult time studying IF3 because it is so essential for translation initiation that it can not be altered without causing death. In fact, it remains one of the few proteins involved in translation for which no effective antibiotic has been developed. But the ability of the Kehoe team to delete either of the two infC genes in F. diplosiphon without causing lethality will allow the group to modify both IF3a and IF3b at will.

"Now that we know that F. diplosiphon contains two functionally different IF3s, and that each is nonessential, we have a unique opportunity to enhance our understanding of how the structural features of IF3 are related to its function," Kehoe said. "Advancing our understanding of the role of IF3 in translation is likely to provide opportunities to develop new antibiotics that are targeted to this class of proteins."


Story Source:

The above story is based on materials provided by Indiana University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Andrian Gutu, April D. Nesbit, Andrew J. Alverson Jeffrey D. Palmer, And David M. Kehoe. Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression. PNAS, 2013 DOI: 10.1073/pnas.1306332110

Cite This Page:

Indiana University. "New role for protein family could provide path to how crop traits are modified." ScienceDaily. ScienceDaily, 18 September 2013. <www.sciencedaily.com/releases/2013/09/130918181128.htm>.
Indiana University. (2013, September 18). New role for protein family could provide path to how crop traits are modified. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2013/09/130918181128.htm
Indiana University. "New role for protein family could provide path to how crop traits are modified." ScienceDaily. www.sciencedaily.com/releases/2013/09/130918181128.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dogs Bring on So Many Different Emotions in Their Human Best Friends

Dogs Bring on So Many Different Emotions in Their Human Best Friends

RightThisMinute (Jan. 28, 2015) From new-puppy happy tears to helpful-grocery-carrying-dog laughter, our four-legged best friends can make us feel the entire spectrum of emotions. Video provided by RightThisMinute
Powered by NewsLook.com
Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Newsy (Jan. 28, 2015) Wrongly categorized as lizard fossils, snake fossils now show the reptile could have developed earlier than we thought — 70 million years earlier. Video provided by Newsy
Powered by NewsLook.com
Malnutrition on the Rise as Violence Flares in C. Africa

Malnutrition on the Rise as Violence Flares in C. Africa

AFP (Jan. 28, 2015) Violence can flare up at any moment in Bambari with only a bridge separating Muslims and Christians. Malnutrition is on the rise and lack of water means simple cooking fires threaten to destroy makeshift camps where people are living. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Poultry Culled in Taiwan to Thwart Bird Flu

Poultry Culled in Taiwan to Thwart Bird Flu

Reuters - News Video Online (Jan. 28, 2015) Taiwan culls over a million poultry in efforts to halt various strains of avian flu. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins