Featured Research

from universities, journals, and other organizations

Turtle eye muscle adapts to deal with obstructed vision

Date:
September 19, 2013
Source:
Saint Louis University Medical Center
Summary:
While researchers expected that the pond turtle’s eyes would operate like other animals with eyes on the side of their heads, this particular species of turtle appears to have characteristics of both front and side-eyed animals.

A turtle pulls its eyes in different directions when its head is out of its shell compared to when its head is retracted deep within its shell.
Credit: WoGi / Fotolia

In a recent study published in The Journal of Comparative Neurology, Saint Louis University professor of pharmacological and physiological science Michael Ariel, Ph.D., reported surprising findings about the eye movements of pond turtles who can retract their head deep into their shell. While researchers expected that the pond turtle's eyes would operate like other animals with eyes on the side of their heads, this particular species of turtle appears to have characteristics of both front and side-eyed animals, affecting a specific eye muscle's direction of pull and the turtle's eye position when its peripheral vision is blocked by its shell.

Humans, and many mammals like cats and monkeys, have their eyes viewing forward. In contrast, most lower vertebrates, including turtles, have eyes that are lateral -- on the side of their heads. Of the six muscles that move each eye, the muscles that move lateral eyes differ from the muscles of animals that move eyes viewing forward. In an earlier study, Ariel and his research team made an unexpected observation that a nerve that moves one of the pond turtle's eye muscles, the superior oblique muscle, was active when that turtle moved its head from side to side, much like that of animals whose eyes view forward .

In the current study, Ariel and the research team tested his theory that the pond turtle had characteristics of a front-eyed animal in three ways: physiologically, looking at the eye movement response to nerve stimulation; anatomically, examining how muscles were attached to the eyes and head; and behaviorally, examining eye positions.

And, indeed, the researchers found that a turtle pulls its eyes in different directions when its head is out of its shell compared to when its head is retracted deep within its shell. Because the pond turtle can pull its head entirely into its shell, resulting in an obstructed field of vision, it appears that this turtle has developed a way to compensate and direct its eyes forward to best examine its environment. Moreover, the superior oblique muscle may play a role in this behavior as its direction of pull is more like that of a front-eyed animal than that of animals with eyes on the side of their heads.

Eye movements are related to the vestibulo-ocular reflex (VOR), a reflex whose brain pathways are also studied by Ariel. The VOR allows your eyes to adjust their position when you move your head. For example, when you turn your head to the right, your eyes move to the left to keep the image you're looking at within your field of view. The VOR also is a clinical test used to check eye reflexes in people. When this process is not working, people can experience vertigo, for example.

Ariel, who has studied pond turtles for 25 years, says they are unique among all animals because they block their peripheral vision by pulling their heads into their shell. "Not all turtles can do this. A sea turtle, for example, cannot pull its head into its shell. We expected that pond turtles would be like other turtles and other lateral eye animals" said Ariel. "That wasn't the case. Surprising, their eye movements can also be like that of humans."


Story Source:

The above story is based on materials provided by Saint Louis University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. J.R. Dearworth, A.L. Ashworth, J.M. Kaye, D.T. Bednarz, J.F. Blaum, J.M. Vacca, J.E. McNeish, K.A. Higgins, C.L. Michael, M.G. Skrobola, M.S. Jones, M. Ariel. Role of the trochlear nerve in eye abduction and frontal vision of the red-eared slider turtle (Trachemys scripta elegans). Journal of Comparative Neurology, 2013; 521 (15): 3464 DOI: 10.1002/cne.23361

Cite This Page:

Saint Louis University Medical Center. "Turtle eye muscle adapts to deal with obstructed vision." ScienceDaily. ScienceDaily, 19 September 2013. <www.sciencedaily.com/releases/2013/09/130919121858.htm>.
Saint Louis University Medical Center. (2013, September 19). Turtle eye muscle adapts to deal with obstructed vision. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2013/09/130919121858.htm
Saint Louis University Medical Center. "Turtle eye muscle adapts to deal with obstructed vision." ScienceDaily. www.sciencedaily.com/releases/2013/09/130919121858.htm (accessed August 23, 2014).

Share This




More Plants & Animals News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins