Featured Research

from universities, journals, and other organizations

Plant cell architecture: Growth toward a light source

Date:
November 7, 2013
Source:
Carnegie Institution
Summary:
Inside every plant cell, a cytoskeleton provides an interior scaffolding to direct construction of the cell's walls, and thus the growth of the organism as a whole. Environmental and hormonal signals that modulate cell growth cause reorganization of this scaffolding. New research provides surprising evidence as to how this reorganization process works, with important evidence as to how the direction of a light source influences a plant's growth pattern.

Sprouts. Inside every plant cell, a cytoskeleton provides an interior scaffolding to direct construction of the cell's walls, and thus the growth of the organism as a whole. Environmental and hormonal signals that modulate cell growth cause reorganization of this scaffolding. New research provides surprising evidence as to how this reorganization process works, with important evidence as to how the direction of a light source influences a plant's growth pattern.
Credit: lily / Fotolia

Inside every plant cell, a cytoskeleton provides an interior scaffolding to direct construction of the cell's walls, and thus the growth of the organism as a whole. Environmental and hormonal signals that modulate cell growth cause reorganization of this scaffolding. New research led by Carnegie's David Ehrhardt provides surprising evidence as to how this reorganization process works, with important evidence as to how the direction of a light source influences a plant's growth pattern.

It is published by Science Express.

The cytoskeleton undergirding each cell includes an array of tubule-shaped protein fibers called microtubules. By directing cell growth and development, this scaffold is crucial for supporting important plant functions such as photosynthesis, nutrient gathering, and reproduction.

The cytoskeleton does not appear to be remodeled by moving these microtubules around in the cell. Rather, it is altered by changes to the way these fiber arrays are assembled or disassembled. Ehrhardt's team--including lead author Jelmer Lindeboom, Masayoshi Nakamura, Ryan Gutierrez and Viktor Kirik, all from Carnegie--used advanced tools to watch the reorganization process of these microtubule arrays under different conditions.

These imaging data, combined with the results of genetic experiments, revealed a mechanism by which plants orient microtubule arrays. A protein called katanin drives this mechanism, which it achieves by redirecting microtubule growth in response to blue light. It does so by severing the microtubules where they intersect with each other, creating new ends that can regrow and themselves be severed, resulting in a rapid amplification of new microtubules lying in another, more desired, direction.

"Our genetic data, together with previous studies that tie microtubule organization to cell growth, indicate that this restructuring is required for the plant to bend toward a light source as it grows, a phenomenon called phototropism," Ehrhardt explained. "Our findings also have broader implications for the construction of cytoskeletons in other types of cells, including human cells, because katanin is conserved between animals and plants."

"This is exceptional work, which draws upon decades of pioneering discoveries made by Carnegie's Winslow Briggs on blue light perception. For the first time Ehrhhardt's group demonstrates how blue light drives changes in cytoskeleton organization, which underlies the architecture and mechanical properties of the cell walls. These properties are critical for the light-induced bending" says Wolf B. Frommer, Director of the department. He terms the study: "fantastic work, a milestone in the history of blue light research."


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jelmer J. Lindeboom, Masayoshi Nakamura, Anneke Hibbel, Kostya Shundyak, Ryan Gutierrez, Tijs Ketelaar, Anne Mie C. Emons, Bela M. Mulder, Viktor Kirik, and David W. Ehrhardt. A Mechanism for Reorientation of Cortical Microtubule Arrays Driven by Microtubule Severing. Science, 7 November 2013 DOI: 10.1126/science.1245533

Cite This Page:

Carnegie Institution. "Plant cell architecture: Growth toward a light source." ScienceDaily. ScienceDaily, 7 November 2013. <www.sciencedaily.com/releases/2013/11/131107142530.htm>.
Carnegie Institution. (2013, November 7). Plant cell architecture: Growth toward a light source. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2013/11/131107142530.htm
Carnegie Institution. "Plant cell architecture: Growth toward a light source." ScienceDaily. www.sciencedaily.com/releases/2013/11/131107142530.htm (accessed April 19, 2014).

Share This



More Plants & Animals News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins