Featured Research

from universities, journals, and other organizations

New tool for profiling critical regulatory structures of RNA molecules

Date:
November 25, 2013
Source:
Penn State
Summary:
A molecular technique that will help the scientific community to analyze -- on a scale previously impossible -- molecules that play a critical role in regulating gene expression has been developed by a research team. The technique, which has potential uses in human health, enables more-accurate prediction of how ribonucleic acid molecules fold within living cells, shedding new light on how living organisms respond to environmental conditions.

A molecular technique that will help the scientific community to analyze -- on a scale previously impossible -- molecules that play a critical role in regulating gene expression has been developed by a research team led by a chemist and a plant biologist at Penn State University. The scientists developed a method that enables more-accurate prediction of how ribonucleic acid molecules (RNAs) fold within living cells, thus shedding new light on how plants -- as well as other living organisms -- respond to environmental conditions. Potential implications of the methodology for human health include, for example, learning how an infection-induced fever could affect the RNA structures of both humans and pathogens.

A paper by the research team -- led by Sarah M. Assmann, Waller Professor of Biology, and Philip Bevilacqua, professor of chemistry -- is scheduled for early online publication in the journal Nature on 24 November 2013.

"Scientists have studied a few individual RNA molecules, but now we have data on almost all the RNA molecules in a cell -- more than 10,000 different RNAs," Assmann said. "We are the first to determine, on a genome-wide basis, the structures of the RNA molecules in a plant, or in any living organism."

Temperature and drought are among the environmental stress factors that affect the structure of RNA molecules, thereby influencing how genes are "expressed" -- how their functions are turned on or turned off. "Climate change is predicted to cause increasingly extreme and unpredictable heat waves and droughts, which would impact our food crops, in part by affecting the structures of their RNA molecules and so influencing their translation into proteins," Bevilacqua said. "The more we understand about how environmental factors affect RNA structure and thereby influence gene expression, the more we may be able to breed -- or develop with biotechnological methods -- crops that are more resistant to those stresses. Such crops, which could perform better under more-marginal conditions, could help feed the world's growing population."

The scientific achievement of the Penn State research team -- postdoctoral scholar Yiliang Ding, graduate students Yin Tang and Chun Kit Kwok, and Professor of Statistics Yu Zhang, along with Assmann and Bevilacqua--involved determining the structures of the varieties of RNA molecules in a plant named Arabidopsis thaliana. This plant is used worldwide as a model species for scientific research.

Arabidopsis thaliana, commonly known as mouse-ear cress, is an ideal organism for RNA studies, the researchers say, because it is the first plant species to have its full genome sequenced and has the greatest number of genetic tools available.

RNA is the intermediate molecule between DNA and proteins in all living things. It is a critical component in the pathway of gene expression, which controls an organism's function. Unlike the double-stranded DNA molecule, which is compressed into cells by twisting and wrapping around proteins, RNA is single stranded, and folds back on itself. The researchers set out to answer the question, How exactly does RNA fold in a cell and how does that folding regulate gene function?

"We needed a tool to answer that question," says Bevilacqua. "That tool involves introducing a chemical into the plant that can modify some segments of the RNA but not others, which then gives a readout of the structure of the RNA. Using this technique we can figure out which classes of genes are associated with certain RNA structural traits. And we can try to understand how these RNA structural changes relate to certain biological functions."

"Previously, researchers would query the structures of individual RNAs in a cell one by one, and it was a tedious process," says Assmann. "You can't abstract rules or generalities about how RNAs are behaving just from knowing the structures of one or a few RNAs--you can't get a pattern. Now that we have genome-wide information for a particular organism, we can start to abstract patterns of how RNA structure influences gene expression and ultimately plant function. Other scientists can query their organisms of interest and ask what rules they can abstract. Are there universal rules that will be true for all organisms for how RNA structure influences gene expression?"

Bevilacqua adds, "Because RNA is so central in its role in gene regulation, the tools we've developed can be transferred to scientists who are working with essentially any biological system." Long-term potential implications of the methodology include human health--for example, how an infection-induced fever could affect the RNA structures of both humans and pathogens.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yiliang Ding, Yin Tang, Chun Kit Kwok, Yu Zhang, Philip C. Bevilacqua, Sarah M. Assmann. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature, 2013; DOI: 10.1038/nature12756

Cite This Page:

Penn State. "New tool for profiling critical regulatory structures of RNA molecules." ScienceDaily. ScienceDaily, 25 November 2013. <www.sciencedaily.com/releases/2013/11/131125091631.htm>.
Penn State. (2013, November 25). New tool for profiling critical regulatory structures of RNA molecules. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2013/11/131125091631.htm
Penn State. "New tool for profiling critical regulatory structures of RNA molecules." ScienceDaily. www.sciencedaily.com/releases/2013/11/131125091631.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins