Featured Research

from universities, journals, and other organizations

Of lice and men (and chimps): Study tracks pace of molecular evolution

Date:
January 7, 2014
Source:
University of Illinois at Urbana-Champaign
Summary:
A new study compares the relative rate of molecular evolution between humans and chimps with that of their lice. The researchers wanted to know whether evolution marches on at a steady pace in all creatures or if subtle changes in genes -- substitutions of individual letters of the genetic code -- occur more rapidly in some groups than in others.

The researchers measured the evolutionary divergence between humans and chimps and compared it to that of their lice, Pediculus humanus, left, the human head louse, and Pediculus schaeffi, the chimp louse.
Credit: Julie Allen

A new study compares the relative rate of molecular evolution between humans and chimps with that of their lice. The researchers wanted to know whether evolution marches on at a steady pace in all creatures or if subtle changes in genes -- substitutions of individual letters of the genetic code -- occur more rapidly in some groups than in others.

Related Articles


A report of the study appears in the Proceedings of the Royal Society B.

The team chose its study subjects because humans, chimps and their lice share a common historical fate: When the ancestors of humans and chimps went their separate ways, evolutionarily speaking, so did their lice.

"Humans are chimps' closest relatives and chimps are humans' closest relatives -- and their lice are each others' closest relatives," said study leader Kevin Johnson, an ornithologist with the Illinois Natural History Survey at the University of Illinois. "Once the hosts were no longer in contact with each other, the parasites were not in contact with each other because they spend their entire life cycle on their hosts."

This fact, a mutual divergence that began at the same point in time (roughly 5 million to 6 million years ago) allowed Johnson and his colleagues to determine whether molecular evolution occurs faster in primates or in their parasites.

Previous studies had looked at the rate of molecular changes between parasites and their hosts, but most focused on single genes in the mitochondria, tiny energy-generating structures outside the nucleus of the cell that are easier to study. The new analysis is the first to look at the pace of molecular change across the genomes of different groups. It compared a total of 1,534 genes shared by the primates and their parasites.

To do this, the team had to first assemble a rough sequence of the chimp louse (Pan troglodytes schweinfurthii) genome, the only one of the four organisms for which a full genome sequence was unavailable.

The team also tracked whether changes in gene sequence altered the structure of the proteins for which the genes coded (they looked only at protein-coding genes). For every gene they analyzed, they determined whether sequence changes resulted in a different amino acid being added to a protein at a given location.

They found that -- at the scale of random changes to gene sequence -- the lice are winning the molecular evolutionary race. This confirmed what previous, more limited studies had hinted at.

"For every single gene we looked at, the lice had more differences (between them) than (were found) between humans and chimps. On average, the parasites had almost 15 times more changes," Johnson said. "Often in parasites you see these faster rates," he said. There have been several hypotheses as to why, he said.

Humans and chimps had a greater percentage of sequence changes that led to changes in protein structure, the researchers found. That means that even though the louse genes are changing at a faster rate, most of those changes are "silent," having no effect on the proteins for which they code. Since these changes make no difference to the life of the organism, they are tolerated, Johnson said. Those sequence changes that actually do change the structure of proteins in lice are likely to be harmful and are being eliminated by natural selection, he said.

In humans and chimps, the higher proportion of amino acid changes suggests that some of those genes are under the influence of "positive selection," meaning that the altered proteins give the primates some evolutionary advantage, Johnson said.

Most of the genes that changed more quickly or slowly in primates followed the same pattern in their lice, Johnson said.

"The most likely explanation for this is that certain genes are more important for the function of the cell and can't tolerate change as much," Johnson said.

The new study begins to answer fundamental questions about changes at the molecular level that eventually shape the destinies of all organisms, Johnson said.

"Any difference that we see between species at the morphological level almost certainly has a genetic basis, so understanding how different genes are different from each other helps us understand why different species are different from each other," he said. "Fundamentally, we want to know which genetic differences matter, which don't, and why certain genes might change faster than others, leading to those differences."


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kevin Johnson et al. Rates of Genomic Divergence in Humans, Chimpanzees and Their Lice. Proceedings of the Royal Society B, January 2014

Cite This Page:

University of Illinois at Urbana-Champaign. "Of lice and men (and chimps): Study tracks pace of molecular evolution." ScienceDaily. ScienceDaily, 7 January 2014. <www.sciencedaily.com/releases/2014/01/140107215357.htm>.
University of Illinois at Urbana-Champaign. (2014, January 7). Of lice and men (and chimps): Study tracks pace of molecular evolution. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2014/01/140107215357.htm
University of Illinois at Urbana-Champaign. "Of lice and men (and chimps): Study tracks pace of molecular evolution." ScienceDaily. www.sciencedaily.com/releases/2014/01/140107215357.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins