Featured Research

from universities, journals, and other organizations

Capturing a hard-wired variability: What makes some identical twins noticeably different?

Date:
January 9, 2014
Source:
Ludwig Institute for Cancer Research
Summary:
A new study has uncovered a phenomenon that alters prevailing views of how the genome is expressed to make and sustain the life of mammals. The article helps explain why genetically identical animals are sometimes so different in their biology and appearance, and why some inherited disorders caused by a shared set of aberrant genes can be of such variable severity in different people.

New research explains in some measure why identical twins -- products of nearly identical genomes -- can be noticeably different from one another in their appearance and propensity for disease.
Credit: Andy Dean / Fotolia

A Ludwig Cancer Research study has uncovered a phenomenon that alters prevailing views of how the genome is expressed to make and sustain the life of mammals. Published in the journal Science, the paper helps explain why genetically identical animals are sometimes so different in their biology and appearance, and why some inherited disorders caused by a shared set of aberrant genes can be of such variable severity in different people.

Related Articles


"We have captured a fundamental randomness at the level of gene expression that has never before been described -- one that persists throughout development and into adulthood," says Ludwig scientist Rickard Sandberg at the Karolinska Institutet in Sweden. The discovery was made possible by a powerful new technique developed by Sandberg's lab for analyzing the global expression of genes in single cells.

With the exception of a subset of genes found on sex chromosomes, every mammal inherits one copy of every gene from each of its parents. Each of those copies is known as an allele, and alleles often differ measurably from their genomic siblings -- a fact that accounts for a good deal of human and animal diversity. It has, however, long been unclear whether each allele in any given cell or organism is expressed equally, or whether one allele is favored over the other. The current study finds that only one allele is expressed in between 12 and 24 percent of all such pairs encoded by the mouse genome. Further, the selection of expressed alleles varies randomly from cell to cell, and switches frequently between the two options throughout their lives.

Biologists typically assume that most alleles, with a few exceptions, are equally expressed on all chromosomes except those that determine sex. They have long known, however, that "imprinted" genes -- which may be modified to selectively express only one of the two alleles -- are an exception. But such genes only account for 1 percent of the total. "We find that for those genes that are not imprinted, roughly one in five alleles is randomly and dynamically expressed only one at a time," says Sandberg. "And if one allele is being expressed, the other doesn't know about it. There's no coordination between two."

This explains in some measure why identical twins -- products of nearly identical genomes -- can be noticeably different from one another in their appearance and propensity for disease. Living things are, after all, built from cells, and each cell is in turn the product of the genes it expresses. Dynamic and random allelic expression can result in different blends of some traits, even in otherwise genetically identical people.

The finding also has significant implications for our understanding of some genetic diseases, such as neurofibromatosis, a painful disorder characterized by the systemic proliferation of non-cancerous neural tumors. It has long been a mystery why people who share the mutations that cause this family of diseases are so variably affected by it. The essential randomness of allelic expression might help account for those differences in this disease as well as in others.


Story Source:

The above story is based on materials provided by Ludwig Institute for Cancer Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Q. Deng, D. Ramskold, B. Reinius, R. Sandberg. Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells. Science, 2014; 343 (6167): 193 DOI: 10.1126/science.1245316

Cite This Page:

Ludwig Institute for Cancer Research. "Capturing a hard-wired variability: What makes some identical twins noticeably different?." ScienceDaily. ScienceDaily, 9 January 2014. <www.sciencedaily.com/releases/2014/01/140109143756.htm>.
Ludwig Institute for Cancer Research. (2014, January 9). Capturing a hard-wired variability: What makes some identical twins noticeably different?. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2014/01/140109143756.htm
Ludwig Institute for Cancer Research. "Capturing a hard-wired variability: What makes some identical twins noticeably different?." ScienceDaily. www.sciencedaily.com/releases/2014/01/140109143756.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins