Featured Research

from universities, journals, and other organizations

Some lung diseases reversed in mice by coaxing production of healthy cells

Date:
January 30, 2014
Source:
Boston Children's Hospital
Summary:
Introducing proteins that direct lung stem cells to grow the specific cell types needed to repair lung injuries could lead to new ways to treat some lung diseases, according to research published.

It may be possible one day to treat several lung diseases by introducing proteins that direct lung stem cells to grow the specific cell types needed to repair the lung injuries involved in the conditions, according to new research at Boston Children's Hospital.

Related Articles


Reporting in the January 30th issue of Cell, researchers led by Carla Kim, PhD, and Joo-Hyeon Lee, PhD, of the Stem Cell Research Program at Boston Children's, describe a new pathway in the lung, activated by injury, that directs stem cells to transform into specific types of cells. By enhancing this natural pathway in a mouse model, they successfully increased production of alveolar epithelial cells, which line the small sacs (alveoli) where gas exchange takes place. These cells are irreversibly damaged in diseases like pulmonary fibrosis and emphysema.

By inhibiting the same pathway, the researchers ramped up production of airway epithelial cells, which become damaged in diseases affecting the lung's airways, such as asthma and bronchiolitis obliterans.

Using a novel 3D culture model that mimics the environment of the lung, the researchers showed that even a single lung stem cell could be coaxed into producing alveolar and bronchiolar epithelial cells. By adding a protein known as thrombospondin-1 (TSP-1) to these cultures, they prodded the stem cells to generate alveolar cells.

Kim and Lee conducted experiments using a live mouse model of fibrosis. By simply taking the endothelial cells that line the lung's many small blood vessels -- which naturally produce TSP-1 -- and directly injecting the liquid surrounding the cultured cells into the mice, they were able to reverse the lung damage.

Conversely, when the team used lung endothelial cells that lacked TSP-1 in the 3D cultures, the stem cells produced more airway cells. In live mice engineered to lack TSP-1, airway repair was enhanced after injury.

"When lung cells are injured, there seems to be a cross talk between the damaged cells, the lung endothelial cells and the stem cells," says Lee, who is first author on the paper.

"We think that lung endothelial cells produce a lot of repair factors besides TSP-1," adds Kim, the paper's senior author. "We want to find all these molecules, which could provide additional therapeutic targets."


Story Source:

The above story is based on materials provided by Boston Children's Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joo-Hyeon Lee, Dong Ha Bhang, Alexander Beede, Tian Lian Huang, Barry R. Stripp, Kenneth D. Bloch, Amy J. Wagers, Yu-Hua Tseng, Sandra Ryeom, Carla F. Kim. Lung Stem Cell Differentiation in Mice Directed by Endothelial Cells via a BMP4-NFATc1-Thrombospondin-1 Axis. Cell, January 2014 DOI: 10.1016/j.cell.2013.12.039

Cite This Page:

Boston Children's Hospital. "Some lung diseases reversed in mice by coaxing production of healthy cells." ScienceDaily. ScienceDaily, 30 January 2014. <www.sciencedaily.com/releases/2014/01/140130121619.htm>.
Boston Children's Hospital. (2014, January 30). Some lung diseases reversed in mice by coaxing production of healthy cells. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2014/01/140130121619.htm
Boston Children's Hospital. "Some lung diseases reversed in mice by coaxing production of healthy cells." ScienceDaily. www.sciencedaily.com/releases/2014/01/140130121619.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins