Featured Research

from universities, journals, and other organizations

Impaired cell division leads to neuronal disorder

Date:
January 31, 2014
Source:
University of Basel
Summary:
Researchers have discovered an amino acid signal essential for error-free cell division. This signal regulates the number of centrosomes in the cell, and its absence results in the development of pathologically altered cells. Remarkably, such altered cells are found in people with a neurodevelopmental disorder, called autosomal recessive primary microcephaly.

Flawed separation of chromosomes (blue) with several centrosomes (red) in a multipolar spindel apparatus (green).
Credit: University of Basel

Prof. Erich Nigg and his research group at the Biozentrum of the University of Basel have discovered an amino acid signal essential for error-free cell division. This signal regulates the number of centrosomes in the cell, and its absence results in the development of pathologically altered cells. Remarkably, such altered cells are found in people with a neurodevelopmental disorder, called autosomal recessive primary microcephaly. The results of these investigations have been published in the current issue of the US journal Current Biology.

Normal separation of chromosomes (blue) with two centrosomes (red) in a bipolar spindel apparatus (green). Flawed separation of chromosomes (blue) with several centrosomes (red) in a multipolar spindel apparatus (green).

Cell division is the basis of all life. Of central importance is the error-free segregation of genetic material, the chromosomes. A flawless division process is a prerequisite for the development of healthy, new cells, whilst errors in cell division can cause illnesses such as cancer. The centrosome, a tiny cell organelle, plays a decisive role in this process.

Prof. Erich Nigg's research group at the Biozentrum of the University of Basel has investigated an important step in cell division: the duplication of the centrosome and its role in the correct segregation of the chromosomes into two daughter cells. The protein STIL has an essential function in this process. It ensures that centrosome duplicate before one half of the genetic material is transported into each of the two daughter cells.

KEN-Box important for protein breakdown

During cell division, the protein STIL is degraded. If this does not occur, the protein accumulates in the cell, which then causes an overproduction of centrosomes. As a consequence, mis-segregated chromosomes are incorporated into the daughter cells, which then represent cells with faulty genetic material. The scientists discovered an amino acid signal on the STIL protein, a so-called KEN-Box, and showed that this is critical for the breakdown of the protein: "The Ken-Box is the signal that orders the protein degradation machinery to break down the STIL protein," explains Christian Arquint, the first author of this publication. In the absence of the KEN-Box, the protein is not degraded.

Absence of the KEN-Box causes microcephaly

In some patients with microcephaly, a neuronal disorder that leads to a reduced number of nerve cells being produced and, therefore, a smaller brain, the KEN-box is lacking from the STIL protein. The scientists were thus able to demonstrate a tantalizing connection between the absence of this particular amino acid signal and an illness. "When during our investigations of cell division and centrosome duplication we came across a connection to the disorder microcephaly, we were particularly pleased, as this helps us to better understand how this disorder develops," says Christian Arquint.

In the future, the research group led by Erich Nigg plans to uncover other connections between errors of cell division and the illness microcephaly. They also want to focus on the investigation of other proteins that play important roles in the process of cell division, in particular those involved in centrosome duplication.


Story Source:

The above story is based on materials provided by University of Basel. Note: Materials may be edited for content and length.


Journal Reference:

  1. Christian Arquint, ErichA. Nigg. STIL Microcephaly Mutations Interfere with APC/C-Mediated Degradation and Cause Centriole Amplification. Current Biology, 2014; DOI: 10.1016/j.cub.2013.12.016

Cite This Page:

University of Basel. "Impaired cell division leads to neuronal disorder." ScienceDaily. ScienceDaily, 31 January 2014. <www.sciencedaily.com/releases/2014/01/140131101159.htm>.
University of Basel. (2014, January 31). Impaired cell division leads to neuronal disorder. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2014/01/140131101159.htm
University of Basel. "Impaired cell division leads to neuronal disorder." ScienceDaily. www.sciencedaily.com/releases/2014/01/140131101159.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Reuters - US Online Video (Oct. 21, 2014) Police in Gary, Indiana are using cadaver dogs to search for more victims after a suspected serial killer confessed to killing at least seven women. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
White Lion Cubs Unveiled to the Public

White Lion Cubs Unveiled to the Public

Reuters - Light News Video Online (Oct. 21, 2014) Visitors to Belgrade zoo meet a pair of three-week-old lion cubs for the first time. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins