Featured Research

from universities, journals, and other organizations

Split decision: Stem cell signal linked with cancer growth

Date:
February 2, 2014
Source:
University of California - San Diego
Summary:
Researchers have identified a protein critical to hematopoietic stem cell function and blood formation. The finding has potential as a new target for treating leukemia because cancer stem cells rely upon the same protein to regulate and sustain their growth.

This is a confocal micrograph of a human melanoma cell undergoing division or mitosis. The resulting daughter cells are temporarily linked by a bridge of remaining cytoplasm. Green staining labels the endoplasmic reticulum; red colors the mitochondria. Blue indicates the chromosomes.
Credit: Wellcome Images

Researchers at the University of California, San Diego School of Medicine have identified a protein critical to hematopoietic stem cell function and blood formation. The finding has potential as a new target for treating leukemia because cancer stem cells rely upon the same protein to regulate and sustain their growth.

Hematopoietic stem cells give rise to all other blood cells. Writing in the February 2, 2014 advance online issue of Nature Genetics, principal investigator Tannishtha Reya, PhD, professor in the Department of Pharmacology, and colleagues found that a protein called Lis1 fundamentally regulates asymmetric division of hematopoietic stem cells, assuring that the stem cells correctly differentiate to provide an adequate, sustained supply of new blood cells.

Asymmetric division occurs when a stem cell divides into two daughter cells of unequal inheritance: One daughter differentiates into a permanently specialized cell type while the other remains undifferentiated and capable of further divisions.

"This process is very important for the proper generation of all the cells needed for the development and function of many normal tissues," said Reya. When cells divide, Lis1 controls orientation of the mitotic spindle, an apparatus of subcellular fibers that segregates chromosomes during cell division.

"During division, the spindle is attached to a particular point on the cell membrane, which also determines the axis along which the cell will divide," Reya said. "Because proteins are not evenly distributed throughout the cell, the axis of division, in turn, determines the types and amounts of proteins that get distributed to each daughter cell. By analogy, imagine the difference between cutting Earth along the equator versus halving it longitudinally. In each case, the countries that wind up in the two halves are different."

When researchers deleted Lis1 from mouse hematopoietic stem cells, differentiation was radically altered. Asymmetric division increased and accelerated differentiation, resulting in an oversupply of specialized cells and an ever-diminishing reserve of undifferentiated stem cells, which eventually resulted in a bloodless mouse.

"What we found was that a large part of the defect in blood formation was due to a failure of stem cells to expand," said Reya. "Instead of undergoing symmetric divisions to generate two stem cell daughters, they predominantly underwent asymmetric division to generate more specialized cells. As a result, the mice were unable to generate enough stem cells to sustain blood cell production."

The scientists next looked at how cancer stem cells in mice behaved when the Lis1 signaling pathway was blocked, discovering that they too lost the ability to renew and propagate. "In this sense, the effect Lis1 has on leukemic self-renewal parallels its role in normal stem cell self-renewal," Reya said.

Reya said the findings shed new light on the fundamental regulators of cell growth both in normal development and in cancer.

"Our work shows that elimination of Lis1 potently inhibits cancer growth, and identifies Lis1 and other regulators of protein inheritance as a new class of molecules that could be targeted in cancer therapy."

In the long term, Reya noted, it remains to be determined whether inhibiting Lis1 in cancer cells would produce unacceptable consequences in normal cells as well. "A number of commonly used hemotherapy agents target the machinery that controls cell division. Although these agents can be toxic, their effects on cancer cells are much more potent than their effects on normal cells, and so they continue to be used. Agents that target Lis1 might be more specific and less toxic, which would give them significant clinical value."


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bryan Zimdahl, Takahiro Ito, Allen Blevins, Jeevisha Bajaj, Takaaki Konuma, Joi Weeks, Claire S Koechlein, Hyog Young Kwon, Omead Arami, David Rizzieri, H Elizabeth Broome, Charles Chuah, Vivian G Oehler, Roman Sasik, Gary Hardiman, Tannishtha Reya. Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia. Nature Genetics, 2014; DOI: 10.1038/ng.2889

Cite This Page:

University of California - San Diego. "Split decision: Stem cell signal linked with cancer growth." ScienceDaily. ScienceDaily, 2 February 2014. <www.sciencedaily.com/releases/2014/02/140202132339.htm>.
University of California - San Diego. (2014, February 2). Split decision: Stem cell signal linked with cancer growth. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2014/02/140202132339.htm
University of California - San Diego. "Split decision: Stem cell signal linked with cancer growth." ScienceDaily. www.sciencedaily.com/releases/2014/02/140202132339.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Fungus Killing Bats, Spreading in US

Deadly Fungus Killing Bats, Spreading in US

AP (Apr. 24, 2014) A disease that has killed more than six million cave-dwelling bats in the United States is on the move and wildlife biologists are worried. White Nose Syndrome, discovered in New York in 2006, has now spread to 25 states. (April 24) Video provided by AP
Powered by NewsLook.com
Companies Ramp Up Wellness to Lower Health Costs

Companies Ramp Up Wellness to Lower Health Costs

AP (Apr. 24, 2014) That little voice telling you to exercise, get in shape and get healthy is probably coming from your boss. More companies are beefing up wellness programs to try and cut down their health care costs. (April 24) Video provided by AP
Powered by NewsLook.com
Blood From World's Oldest Woman Suggests Life Limit

Blood From World's Oldest Woman Suggests Life Limit

Newsy (Apr. 24, 2014) Scientists say for the extremely elderly, their stem cells might reach a state of exhaustion. This could limit one's life span. Video provided by Newsy
Powered by NewsLook.com
FDA Wants To Ban Sales Of E-Cigarettes To Minors

FDA Wants To Ban Sales Of E-Cigarettes To Minors

Newsy (Apr. 24, 2014) The Food and Drug Administration wants to crack down on the use of e-cigarettes, banning the sale of the product to minors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins