Featured Research

from universities, journals, and other organizations

Hot on the trail of cellular metabolism, early detection of disease

Date:
March 4, 2014
Source:
Veterinärmedizinische Universität Wien
Summary:
Cells have a metabolism that can be altered according to its function and requirements. If cellular metabolism is disturbed, it can lead to disease of the entire organism. Researchers have discovered that the uncoupling proteins UCP2 and UPC4 are involved in different types of cellular metabolism. The proteins provide information about the condition of cells. As a result, cell alterations can now be detected much earlier than was thus far possible.

An embryonic stem cell differentiating into a neuronal cell under the microscope.
Credit: Anne Rupprecht/Vetmeduni Vienna

Cells have a metabolism that can be altered according to its function and requirements. If cellular metabolism is disturbed, it can lead to disease of the entire organism. Researchers at the University of Veterinary Medicine in Vienna discovered that the uncoupling proteins UCP2 and UPC4 are involved in different types of cellular metabolism. The proteins provide information about the condition of cells. As a result, cell alterations can now be detected much earlier than was thus far possible. This research work was recently published in the PLOS ONE journal.

Related Articles


UCPs or uncoupling proteins are present in mitochondria, the powerhouse of each cell in the body. The functions of most of the five known UCPs remain mysterious (UCP2-UCP5), whereby only the distinct function for UCP1 has thus far been discovered. UCP1 is responsible for heat production when muscle activity is deficient such as is the case with babies and animals in hibernation. The research team at the Department of Physiology and Biophysics at the University of Veterinary Medicine in Vienna were able to provide a fundamental explanatory concept for the function of UCP2 and UPC4 for the first time. Each of these proteins are involved in different types of cell metabolism.

UCP2 in Stem Cells and Cancer Cells

In earlier studies of immune cells, lead author, Anne Rupprecht, had already shown that UCP2 could be involved in increased metabolism. Embryonic stem cells precisely exhibit such an increased metabolism, as they rapidly and continually divide, just like cancer cells. Rupprecht searched for various UCPs in embryonic stem cells of mice and in effect found UCP2. "Very high amounts of UCP2 even indicated an especially strong increase in metabolism. In other studies UCP2 had also already been detected in cancer cells," according to Rupprecht.

UCP4 in Nerve Cells

In contrast to UCP2, UCP4 is only found in nerve cells. Nerve cells have a completely different metabolism. They seldom divide, unlike stem cells and cancer cells. The research team of Prof. Elena Pohl therefore examined embryonic stem cells that differentiated to nerve cells in culture. On the basis of this model system, the researchers could show that UCP2 is still existent in the quickly reproducing stem cells, yet at the moment of differentiation are replaced by UPC4.

"In our work, we have examined the natural process of cell differentiation from stem cells to neurons. We know that metabolism changes during differentiation. The fact that we found UCP2 in one case and in the other UCP4 proves for the first time that these proteins are associated with varying types of cell metabolism," specified Elena Pohl.

The researchers, for example, found only UCP2 in neuroblastoma cells -- nerve cells that have malignant changes. UCP4, the usual protein of nerve cells was not detectable. UPC4 apparently got lost in the changed nerve cells that were on their way to becoming rapidly reproductive cancer cells.

UCPs for early detection of disease

Rupprecht describes the relevance of her work like this: "The composition of UCPs in the cells discloses information about their current condition. UCP2 could therefore give an indication at an early stage, if a cell is on the way to becoming a cancer cell. Even a classification of the tumor's malignancy would eventually be possible. A faulty mechanism in the nerve cells could lead to a functional disorder and, for instance, to a neurodegenerative illness like Parkison's disease."


Story Source:

The above story is based on materials provided by Veterinärmedizinische Universität Wien. Note: Materials may be edited for content and length.


Journal Reference:

  1. Anne Rupprecht, Dana Sittner, Alina Smorodchenko, Karolina E. Hilse, Justus Goyn, Rudolf Moldzio, Andrea E. M. Seiler, Anja U. Bräuer, Elena E. Pohl. Uncoupling Protein 2 and 4 Expression Pattern during Stem Cell Differentiation Provides New Insight into Their Putative Function. PLoS ONE, 2014; 9 (2): e88474 DOI: 10.1371/journal.pone.0088474

Cite This Page:

Veterinärmedizinische Universität Wien. "Hot on the trail of cellular metabolism, early detection of disease." ScienceDaily. ScienceDaily, 4 March 2014. <www.sciencedaily.com/releases/2014/03/140304071208.htm>.
Veterinärmedizinische Universität Wien. (2014, March 4). Hot on the trail of cellular metabolism, early detection of disease. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2014/03/140304071208.htm
Veterinärmedizinische Universität Wien. "Hot on the trail of cellular metabolism, early detection of disease." ScienceDaily. www.sciencedaily.com/releases/2014/03/140304071208.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) — Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) — Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins