Featured Research

from universities, journals, and other organizations

Fruit flies have latent bioluminescence, study shows

Date:
April 10, 2014
Source:
University of Massachusetts Medical School
Summary:
A synthetic luciferin developed by scientists shows that fruit flies are secretly harboring the biochemistry needed to glow in the dark -- otherwise known as bioluminescence. This discovery expands the scope of bioluminescence imaging for research, and adds new tools for the noninvasive studying of ongoing biological processes.

Stephen C. Miller, PhD, associate professor of biochemistry & molecular pharmacology, (center) is shown with colleagues Randheer Gadarla, PhD, (at left), postdoctoral research fellow, and David Mofford, a fourth-year doctoral candidate in the Graduate School of Biomedical Sciences.
Credit: Image courtesy of University of Massachusetts Medical School

New research from scientists at the University of Massachusetts Medical School shows that fruit flies are secretly harboring the biochemistry needed to glow in the dark -- otherwise known as bioluminescence.

The key to activating this latent ability is a novel synthetic analog of D-luciferin developed at UMMS. The findings, published in the journal Proceedings of the National Academy of Sciences, suggest that the inherent biochemistry needed for bioluminescence is more common than previously thought. Synthetic luciferins can unmask latent enzymatic activity capable of producing light in animals not known for their luminescence. This expands the scope of bioluminescence imaging for research, and adds new tools for the noninvasive studying of ongoing biological processes.

Few animals can naturally glow in the dark. The best known example, the firefly, creates bioluminescence when the small molecule D-luciferin is oxidized by the enzyme luciferase, which is only found in beetles.

The luciferase enzyme is believed to have evolved from the fatty acyl-CoA synthetases (ACSLs) found in all insects. Both classes of enzymes are members of the adenylate-forming superfamily and can activate fatty acids. But only luciferase catalyzes light emission from D-luciferin. Stephen C Miller, PhD, associate professor of biochemistry and molecular pharmacology at UMass Medical School, had previously found that some mutations in the luciferase enzyme reduce light emission from the natural D-luciferin substrate, but improve light emission when using synthetic luciferins developed in his lab.

"This suggested to us that the failure of insect ACSLs to emit light with the beetle luciferase substrate D-luciferin didn't necessarily mean they weren't capable of the biochemistry needed to glow," said Dr. Miller, senior author of the PNAS study.

He hypothesized that ACSL enzymes in other insects are capable of a bioluminescent reaction similar to the firefly. The key was finding a small molecule to fill the role of D-luciferin, which is not a substrate for ACSLs, to kick start the biochemical reaction.

Suspecting that D-luciferin was in fact a poor substrate for ACSLs due to its shape, Miller and colleagues David Mofford, a fourth year doctoral candidate in the Graduate School of Biomedical Sciences and first author of the study and Randheer Gadarla, PhD, postdoctoral research fellow, tested a number of synthetic luciferins he had developed to see if they had the geometry necessary to initiate bioluminescence using the fatty acyl-CoA synthetase CG6178 found in the fruit fly Drosophila melanogaster.

Miller found that when this fruit fly protein was treated with a rigid synthetic analog of D-luciferin, named CycLuc2, it emitted a red glow. Simply adding CycLuc2 to live Drosophila cells was sufficient to make them glow as well. When CG6178 was expressed in mammalian cells, they too were able to emit light in the presence of CycLuc2.

"We think the unique rigid and asymmetric ring structure of the synthetic CycLuc2 molecule acts as a handle to help properly align it within the enzyme so adenylation can occur. Once that happens, the molecule can be oxidized to emit light," said Miller. "D-luciferin doesn't fit properly so the biochemical reaction necessary to initiate bioluminescence can't get started."

These findings suggest that other bioluminescent enzymatic activities may already exist in nature, waiting to be revealed by a suitable luciferin analog. Having multiple luciferases with unique substrates increases the amount of information that can be gained using this technique. And because it doesn't require changing the underlying DNA, utilizing endogenous proteins as luciferases could greatly impact the potential uses of bioluminescence imaging to study gene expression, understand infection, track cancer cells, or gauge the effectiveness of new drugs.

"These synthetic substrates expand the scope of bioluminescence beyond what was previously thought possible," said Miller. "It's going to give scientists new tools to study fundamental biological processes noninvasively in live cells and animals, possibly using an endogenous enzyme rather than firefly luciferase."

One of the next steps for Dr. Miller and colleagues will be exploring whether synthetic luciferins can unmask latent luciferase activity in human ACSL enzymes.


Story Source:

The above story is based on materials provided by University of Massachusetts Medical School. The original article was written by Jim Fessenden. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. M. Mofford, G. R. Reddy, S. C. Miller. Latent luciferase activity in the fruit fly revealed by a synthetic luciferin. Proceedings of the National Academy of Sciences, 2014; 111 (12): 4443 DOI: 10.1073/pnas.1319300111

Cite This Page:

University of Massachusetts Medical School. "Fruit flies have latent bioluminescence, study shows." ScienceDaily. ScienceDaily, 10 April 2014. <www.sciencedaily.com/releases/2014/04/140410095641.htm>.
University of Massachusetts Medical School. (2014, April 10). Fruit flies have latent bioluminescence, study shows. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/04/140410095641.htm
University of Massachusetts Medical School. "Fruit flies have latent bioluminescence, study shows." ScienceDaily. www.sciencedaily.com/releases/2014/04/140410095641.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins