Featured Research

from universities, journals, and other organizations

Fruit flies have latent bioluminescence, study shows

Date:
April 10, 2014
Source:
University of Massachusetts Medical School
Summary:
A synthetic luciferin developed by scientists shows that fruit flies are secretly harboring the biochemistry needed to glow in the dark -- otherwise known as bioluminescence. This discovery expands the scope of bioluminescence imaging for research, and adds new tools for the noninvasive studying of ongoing biological processes.

Stephen C. Miller, PhD, associate professor of biochemistry & molecular pharmacology, (center) is shown with colleagues Randheer Gadarla, PhD, (at left), postdoctoral research fellow, and David Mofford, a fourth-year doctoral candidate in the Graduate School of Biomedical Sciences.
Credit: Image courtesy of University of Massachusetts Medical School

New research from scientists at the University of Massachusetts Medical School shows that fruit flies are secretly harboring the biochemistry needed to glow in the dark -- otherwise known as bioluminescence.

The key to activating this latent ability is a novel synthetic analog of D-luciferin developed at UMMS. The findings, published in the journal Proceedings of the National Academy of Sciences, suggest that the inherent biochemistry needed for bioluminescence is more common than previously thought. Synthetic luciferins can unmask latent enzymatic activity capable of producing light in animals not known for their luminescence. This expands the scope of bioluminescence imaging for research, and adds new tools for the noninvasive studying of ongoing biological processes.

Few animals can naturally glow in the dark. The best known example, the firefly, creates bioluminescence when the small molecule D-luciferin is oxidized by the enzyme luciferase, which is only found in beetles.

The luciferase enzyme is believed to have evolved from the fatty acyl-CoA synthetases (ACSLs) found in all insects. Both classes of enzymes are members of the adenylate-forming superfamily and can activate fatty acids. But only luciferase catalyzes light emission from D-luciferin. Stephen C Miller, PhD, associate professor of biochemistry and molecular pharmacology at UMass Medical School, had previously found that some mutations in the luciferase enzyme reduce light emission from the natural D-luciferin substrate, but improve light emission when using synthetic luciferins developed in his lab.

"This suggested to us that the failure of insect ACSLs to emit light with the beetle luciferase substrate D-luciferin didn't necessarily mean they weren't capable of the biochemistry needed to glow," said Dr. Miller, senior author of the PNAS study.

He hypothesized that ACSL enzymes in other insects are capable of a bioluminescent reaction similar to the firefly. The key was finding a small molecule to fill the role of D-luciferin, which is not a substrate for ACSLs, to kick start the biochemical reaction.

Suspecting that D-luciferin was in fact a poor substrate for ACSLs due to its shape, Miller and colleagues David Mofford, a fourth year doctoral candidate in the Graduate School of Biomedical Sciences and first author of the study and Randheer Gadarla, PhD, postdoctoral research fellow, tested a number of synthetic luciferins he had developed to see if they had the geometry necessary to initiate bioluminescence using the fatty acyl-CoA synthetase CG6178 found in the fruit fly Drosophila melanogaster.

Miller found that when this fruit fly protein was treated with a rigid synthetic analog of D-luciferin, named CycLuc2, it emitted a red glow. Simply adding CycLuc2 to live Drosophila cells was sufficient to make them glow as well. When CG6178 was expressed in mammalian cells, they too were able to emit light in the presence of CycLuc2.

"We think the unique rigid and asymmetric ring structure of the synthetic CycLuc2 molecule acts as a handle to help properly align it within the enzyme so adenylation can occur. Once that happens, the molecule can be oxidized to emit light," said Miller. "D-luciferin doesn't fit properly so the biochemical reaction necessary to initiate bioluminescence can't get started."

These findings suggest that other bioluminescent enzymatic activities may already exist in nature, waiting to be revealed by a suitable luciferin analog. Having multiple luciferases with unique substrates increases the amount of information that can be gained using this technique. And because it doesn't require changing the underlying DNA, utilizing endogenous proteins as luciferases could greatly impact the potential uses of bioluminescence imaging to study gene expression, understand infection, track cancer cells, or gauge the effectiveness of new drugs.

"These synthetic substrates expand the scope of bioluminescence beyond what was previously thought possible," said Miller. "It's going to give scientists new tools to study fundamental biological processes noninvasively in live cells and animals, possibly using an endogenous enzyme rather than firefly luciferase."

One of the next steps for Dr. Miller and colleagues will be exploring whether synthetic luciferins can unmask latent luciferase activity in human ACSL enzymes.


Story Source:

The above story is based on materials provided by University of Massachusetts Medical School. The original article was written by Jim Fessenden. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. M. Mofford, G. R. Reddy, S. C. Miller. Latent luciferase activity in the fruit fly revealed by a synthetic luciferin. Proceedings of the National Academy of Sciences, 2014; 111 (12): 4443 DOI: 10.1073/pnas.1319300111

Cite This Page:

University of Massachusetts Medical School. "Fruit flies have latent bioluminescence, study shows." ScienceDaily. ScienceDaily, 10 April 2014. <www.sciencedaily.com/releases/2014/04/140410095641.htm>.
University of Massachusetts Medical School. (2014, April 10). Fruit flies have latent bioluminescence, study shows. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2014/04/140410095641.htm
University of Massachusetts Medical School. "Fruit flies have latent bioluminescence, study shows." ScienceDaily. www.sciencedaily.com/releases/2014/04/140410095641.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins