Featured Research

from universities, journals, and other organizations

Splice variants reveal connections among autism genes

Date:
April 11, 2014
Source:
University of California, San Diego Health Sciences
Summary:
A new aspect of autism has been discovered, revealing that proteins involved in autism interact with many more partners than previously known. The scientists isolated hundreds of new variants of autism genes from the human brain, and then screened their protein products against thousands of other proteins to identify interacting partners. Proteins produced by alternatively-spliced autism genes and their many partners formed a biological network that produced an unprecedented view of how autism genes are connected.

Splicing variants (red) of autism genes were cloned from the brain and screened for interactions. The image on the right represents the network of interactions. Gray lines are interactions from a single isoform; red lines are interactions from additional isoforms of autism candidate genes (yellow circles).
Credit: UC San Diego School of Medicine

A team of researchers from the University of California, San Diego School of Medicine and the Center for Cancer Systems Biology (CCSB) at the Dana-Farber Cancer Institute has uncovered a new aspect of autism, revealing that proteins involved in autism interact with many more partners than previously known. These interactions had not been detected earlier because they involve alternatively spliced forms of autism genes found in the brain.

In their study, published in the April 11, 2014 online issue of Nature Communications, the scientists isolated hundreds of new variants of autism genes from the human brain, and then screened their protein products against thousands of other proteins to identify interacting partners. Proteins produced by alternatively-spliced autism genes and their many partners formed a biological network that produced an unprecedented view of how autism genes are connected.

“When the newly discovered splice forms of autism genes were added to the network, the total number of interactions doubled,” said principal investigator Lilia Iakoucheva, PhD, assistant professor in the Department of Psychiatry at UC San Diego. In some cases, the splice forms interacted with a completely different set of proteins. “What we see from this network is that different variants of the same protein could alter the wiring of the entire system,” Iakoucheva said.

“This is the first proteome-scale interaction network to incorporate alternative splice forms,” noted Marc Vidal, PhD, CCSB director and a co-investigator on the study. “The fact that protein variants produce such diverse patterns of interactions is exciting and quite unexpected.”

The new network also illuminated how multiple autism genes connect to one another. The scientists found that one class of mutations involved in autism, known as copy number variants, involve genes that are closely connected to each other directly or indirectly through a common partner. “This suggests that shared biological pathways may be disrupted in patients with different autism mutations,” said co-first author Guan Ning Lin, PhD, a postdoctoral fellow in Iakoucheva’s laboratory.

Beyond providing greater breadth and depth around autism proteins, the network represents a new resource for future autism studies, according to Iakoucheva. For example, she said the physical collection of more than 400 splicing variants of autism candidate genes could be used by other researchers interested in studying a specific protein variant. Some of the highly connected network partners may also represent potential drug targets. All interaction data will reside in the publicly available National Database of Autism Research.

“With this assembled autism network, we can begin to investigate how newly discovered mutations from patients may disrupt this network,” said Iakoucheva. “This is an important task because the mechanism by which mutant proteins contribute to autism in 99.9 percent of cases remains unknown.”


Story Source:

The above story is based on materials provided by University of California, San Diego Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. Roser Corominas, Xinping Yang, Guan Ning Lin, Shuli Kang, Yun Shen, Lila Ghamsari, Martin Broly, Maria Rodriguez, Stanley Tam, Shelly A. Trigg, Changyu Fan, Song Yi, Murat Tasan, Irma Lemmens, Xingyan Kuang, Nan Zhao, Dheeraj Malhotra, Jacob J. Michaelson, Vladimir Vacic, Michael A. Calderwood, Frederick P. Roth, Jan Tavernier, Steve Horvath, Kourosh Salehi-Ashtiani, Dmitry Korkin, Jonathan Sebat, David E. Hill, Tong Hao, Marc Vidal, Lilia M. Iakoucheva. Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism. Nature Communications, 2014; 5 DOI: 10.1038/ncomms4650

Cite This Page:

University of California, San Diego Health Sciences. "Splice variants reveal connections among autism genes." ScienceDaily. ScienceDaily, 11 April 2014. <www.sciencedaily.com/releases/2014/04/140411091315.htm>.
University of California, San Diego Health Sciences. (2014, April 11). Splice variants reveal connections among autism genes. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2014/04/140411091315.htm
University of California, San Diego Health Sciences. "Splice variants reveal connections among autism genes." ScienceDaily. www.sciencedaily.com/releases/2014/04/140411091315.htm (accessed September 3, 2014).

Share This



More Mind & Brain News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins