Featured Research

from universities, journals, and other organizations

Cell division speed influences gene architecture

Date:
April 23, 2014
Source:
Instituto Gulbenkian de Ciência (IGC)
Summary:
Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/or sentences. Similarly in humans, biological systems are sometimes under selective pressure to quickly "read" genetic information. Genes that need to be read quickly are usually small, as the smaller the encoding message, the easier it will be to read them quickly. Now, researchers have discovered that, besides size, the gene architecture is also important to the optimization of the “reading” process.

This image shows the early embryo of fruit fly; red and green colors represent DNA and the nuclear membrane, respectively.
Credit: Leonardo Guilgur, Instituto Gulbenkian de Ciencia

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes under selective pressure to quickly "read" genetic information. Genes that need to be read quickly are usually small, as the smaller the encoding message, the easier it will be to read them quickly. Now, researchers from Instituto Gulbenkian de Ciência (IGC, Portugal) and Centre for Molecular and Structural Biomedicine (University of Algarve, Portugal) discovered that, besides size, the gene architecture is also important to the optimization of the "reading" process.

Related Articles


This study was now published in the open access scientific journal eLife.

The research team led by Rui Martinho hit upon these findings while studying the earlier stages of the development in the fruit fly (scientific name, Drosophila melanogaster). It was known that the timing and coordination of the cell cycle and gene expression are crucial for normal development. In the earlier stages of development, cells divide very rapidly, but at the same time they need to correctly 'read' their genes in order to produce the required proteins. Genes contain the 'code' to produce proteins, but also contain sequences, called introns, that are not required for this process and therefore need to be removed before protein synthesis.

By reducing the efficiency of the cell machinery that removes introns, the research team observed that the faillure on the "reading" only occurred in those genes that were expressed during early embryogenesis, in other words when cells were dividing rapidly. This observation lead them to the idea that the process of intron removal is time-consuming, generating a problem in highly proliferative tissues that have a narrow time window to express genes and produce proteins. The researchers confirmed this hypothesis introducing an untypical gene containing multiple introns in the early embryo of fruit flies, and observed that fast dividing cells were unable to efficiently process such gene. Thus, the team concluded that genes expressed in fast dividing cells need to be not only short but also mostly without introns. This could explain why most of the genes expressed during Drosophila early embryogenesis do not have introns.

Rui Martinho says: "Our work shows that biological systems pushed speed-reading to another level: besides deleting non-essential words and sentences to make the text shorter, its entire organization was altered; being mostly without paragraphs. Nature response to speed-reading was simple and effective: short and highly compacted genes without introns."

Leonardo Guilgur, post-doctoral researcher at Rui Martinho's laboratory and first author of this work: add: "Recently it has been shown by another research group that inhibition of the machinery that removes introns has potent activity against most cancer cell lines (which are dividing cells). Therefore increasing our knowledge about the developmental role of intron removal efficiency not only contributes to our understanding of a key biological process, but also offers a new exploratory ground to develop anticancer drug treatments."

Similarly to Drosophila melanogaster, other organisms, such as mosquitoes and zebrafish also have many genes without introns being expressed in the early phases of embryonic development. This indicates that similar constraints to gene architecture are likely common during fast development.


Story Source:

The above story is based on materials provided by Instituto Gulbenkian de Ciência (IGC). Note: Materials may be edited for content and length.


Journal Reference:

  1. L. G. Guilgur, P. Prudencio, D. Sobral, D. Liszekova, A. Rosa, R. G. Martinho. Requirement for highly efficient pre-mRNA splicing during Drosophila early embryonic development. eLife, 2014; 3 (0): e02181 DOI: 10.7554/eLife.02181

Cite This Page:

Instituto Gulbenkian de Ciência (IGC). "Cell division speed influences gene architecture." ScienceDaily. ScienceDaily, 23 April 2014. <www.sciencedaily.com/releases/2014/04/140423095156.htm>.
Instituto Gulbenkian de Ciência (IGC). (2014, April 23). Cell division speed influences gene architecture. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2014/04/140423095156.htm
Instituto Gulbenkian de Ciência (IGC). "Cell division speed influences gene architecture." ScienceDaily. www.sciencedaily.com/releases/2014/04/140423095156.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) — As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) — Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) — Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins