Featured Research

from universities, journals, and other organizations

Protein crucial for development of biological rhythms in mice identified by researchers

Date:
April 24, 2014
Source:
Johns Hopkins Medicine
Summary:
A protein essential to the formation of the tiny brain region in mice that coordinates sleep-wake cycles and other so-called circadian rhythms has been identified by researchers. By disabling the gene for that key protein in test animals, the scientists were able to home in on the mechanism by which that brain region, known as the suprachiasmatic nucleus or SCN, becomes the body's master clock while the embryo is developing.

An illustration of the activity patterns of normal mice.
Credit: Cell Reports, Bedont et al.

Johns Hopkins researchers report that they have identified a protein essential to the formation of the tiny brain region in mice that coordinates sleep-wake cycles and other so-called circadian rhythms.

By disabling the gene for that key protein in test animals, the scientists were able to home in on the mechanism by which that brain region, known as the suprachiasmatic nucleus or SCN, becomes the body's master clock while the embryo is developing.

The results of their experiments, reported in the April 24 issue of Cell Reports, are an important step toward understanding how to better manage the disruptive effects experienced by shift workers, as well as treatment of people with sleep disorders, the researchers say.

"Shift workers tend to have higher rates of diabetes, obesity, depression and cancer. Many researchers think that's somehow connected to their irregular circadian rhythms, and thus to the SCN," says Seth Blackshaw, Ph.D., an associate professor in the Department of Neuroscience and the Institute for Cell Engineering at the Johns Hopkins University School of Medicine. "Our new research will help us and other researchers isolate the specific impacts of the SCN on mammalian health."

Blackshaw explains that every cell in the body has its own "clock" that regulates aspects such as its rate of energy use. The SCN is the master clock that synchronizes these individual timekeepers so that, for example, people feel sleepy at night and alert during the day, are hungry at mealtimes, and are prepared for the energy influx that hits fat cells after eating. "A unique property of the SCN is that if its cells are grown in a dish, they quickly synchronize their clocks with each another," Blackshaw says.

But while evidence like this gave researchers an idea of the SCN's importance, they hadn't completely teased its role apart from that of the body's other clocks, or from other parts of the brain.

The Johns Hopkins team looked for ways to knock down SCN function by targeting and disabling certain genes that disrupt only the formation of the SCN clock. They analyzed which genes were active in different areas of developing mouse brains to identify those that were "turned on" only in the SCN. One of the "hits" was Lhx1, a member of a family of genes whose protein products affect development by controlling the activity of other genes. When the researchers turned off Lhx1 in the SCN of mouse embryos, the grown mice lacked distinctive biochemical signatures seen in the SCN of normal mice.

The genetically modified mice behaved differently, too. Some fell into a pattern of two to three separate cycles of sleep and activity per day, in contrast to the single daily cycle found in normal mice, while others' rhythms were completely disorganized, Blackshaw says. Though an SCN is present in mutant mice, it communicates poorly with clocks elsewhere in the body.

Blackshaw says he expects that the mutant mice will prove a useful tool in finding whether disrupted signaling from the SCN actually leads to the health problems that shift workers experience, and if so, how this might happen. Although mouse models do not correlate fully to human disease, their biochemical and genetic makeup is closely aligned.

Blackshaw's team also plans to continue studying the biochemical chain of events surrounding the Lhx1 protein to determine which proteins turn the Lhx1 gene on and which genes it, in turn, directly switches on or off. Those genes could be at the root of inherited sleep disorders, Blackshaw says, and the proteins they make could prove useful as starting points for the development of new drugs to treat insomnia and even jet lag.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. JosephL. Bedont, TaraA. LeGates, EmilyA. Slat, MardiS. Byerly, Hong Wang, Jianfei Hu, AlanC. Rupp, Jiang Qian, G.William Wong, ErikD. Herzog, Samer Hattar, Seth Blackshaw. Lhx1 Controls Terminal Differentiation and Circadian Function of the Suprachiasmatic Nucleus. Cell Reports, 2014; DOI: 10.1016/j.celrep.2014.03.060

Cite This Page:

Johns Hopkins Medicine. "Protein crucial for development of biological rhythms in mice identified by researchers." ScienceDaily. ScienceDaily, 24 April 2014. <www.sciencedaily.com/releases/2014/04/140424124650.htm>.
Johns Hopkins Medicine. (2014, April 24). Protein crucial for development of biological rhythms in mice identified by researchers. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2014/04/140424124650.htm
Johns Hopkins Medicine. "Protein crucial for development of biological rhythms in mice identified by researchers." ScienceDaily. www.sciencedaily.com/releases/2014/04/140424124650.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Adorable Video of Baby Rhino and Lamb Friend Playing

Adorable Video of Baby Rhino and Lamb Friend Playing

Buzz60 (Oct. 20, 2014) Gertjie the Rhino and Lammie the Lamb are teaching the world about animal conservation and friendship. TC Newman (@PurpleTCNewman) has the adorable video! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins