Featured Research

from universities, journals, and other organizations

Protein crucial for development of biological rhythms in mice identified by researchers

Date:
April 24, 2014
Source:
Johns Hopkins Medicine
Summary:
A protein essential to the formation of the tiny brain region in mice that coordinates sleep-wake cycles and other so-called circadian rhythms has been identified by researchers. By disabling the gene for that key protein in test animals, the scientists were able to home in on the mechanism by which that brain region, known as the suprachiasmatic nucleus or SCN, becomes the body's master clock while the embryo is developing.

An illustration of the activity patterns of normal mice.
Credit: Cell Reports, Bedont et al.

Johns Hopkins researchers report that they have identified a protein essential to the formation of the tiny brain region in mice that coordinates sleep-wake cycles and other so-called circadian rhythms.

By disabling the gene for that key protein in test animals, the scientists were able to home in on the mechanism by which that brain region, known as the suprachiasmatic nucleus or SCN, becomes the body's master clock while the embryo is developing.

The results of their experiments, reported in the April 24 issue of Cell Reports, are an important step toward understanding how to better manage the disruptive effects experienced by shift workers, as well as treatment of people with sleep disorders, the researchers say.

"Shift workers tend to have higher rates of diabetes, obesity, depression and cancer. Many researchers think that's somehow connected to their irregular circadian rhythms, and thus to the SCN," says Seth Blackshaw, Ph.D., an associate professor in the Department of Neuroscience and the Institute for Cell Engineering at the Johns Hopkins University School of Medicine. "Our new research will help us and other researchers isolate the specific impacts of the SCN on mammalian health."

Blackshaw explains that every cell in the body has its own "clock" that regulates aspects such as its rate of energy use. The SCN is the master clock that synchronizes these individual timekeepers so that, for example, people feel sleepy at night and alert during the day, are hungry at mealtimes, and are prepared for the energy influx that hits fat cells after eating. "A unique property of the SCN is that if its cells are grown in a dish, they quickly synchronize their clocks with each another," Blackshaw says.

But while evidence like this gave researchers an idea of the SCN's importance, they hadn't completely teased its role apart from that of the body's other clocks, or from other parts of the brain.

The Johns Hopkins team looked for ways to knock down SCN function by targeting and disabling certain genes that disrupt only the formation of the SCN clock. They analyzed which genes were active in different areas of developing mouse brains to identify those that were "turned on" only in the SCN. One of the "hits" was Lhx1, a member of a family of genes whose protein products affect development by controlling the activity of other genes. When the researchers turned off Lhx1 in the SCN of mouse embryos, the grown mice lacked distinctive biochemical signatures seen in the SCN of normal mice.

The genetically modified mice behaved differently, too. Some fell into a pattern of two to three separate cycles of sleep and activity per day, in contrast to the single daily cycle found in normal mice, while others' rhythms were completely disorganized, Blackshaw says. Though an SCN is present in mutant mice, it communicates poorly with clocks elsewhere in the body.

Blackshaw says he expects that the mutant mice will prove a useful tool in finding whether disrupted signaling from the SCN actually leads to the health problems that shift workers experience, and if so, how this might happen. Although mouse models do not correlate fully to human disease, their biochemical and genetic makeup is closely aligned.

Blackshaw's team also plans to continue studying the biochemical chain of events surrounding the Lhx1 protein to determine which proteins turn the Lhx1 gene on and which genes it, in turn, directly switches on or off. Those genes could be at the root of inherited sleep disorders, Blackshaw says, and the proteins they make could prove useful as starting points for the development of new drugs to treat insomnia and even jet lag.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. JosephL. Bedont, TaraA. LeGates, EmilyA. Slat, MardiS. Byerly, Hong Wang, Jianfei Hu, AlanC. Rupp, Jiang Qian, G.William Wong, ErikD. Herzog, Samer Hattar, Seth Blackshaw. Lhx1 Controls Terminal Differentiation and Circadian Function of the Suprachiasmatic Nucleus. Cell Reports, 2014; DOI: 10.1016/j.celrep.2014.03.060

Cite This Page:

Johns Hopkins Medicine. "Protein crucial for development of biological rhythms in mice identified by researchers." ScienceDaily. ScienceDaily, 24 April 2014. <www.sciencedaily.com/releases/2014/04/140424124650.htm>.
Johns Hopkins Medicine. (2014, April 24). Protein crucial for development of biological rhythms in mice identified by researchers. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2014/04/140424124650.htm
Johns Hopkins Medicine. "Protein crucial for development of biological rhythms in mice identified by researchers." ScienceDaily. www.sciencedaily.com/releases/2014/04/140424124650.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins