Featured Research

from universities, journals, and other organizations

Water-based 'engine' propels tumor cells through tight spaces in body

Date:
April 30, 2014
Source:
Johns Hopkins University
Summary:
Researchers have discovered how cancer cells spread through extremely narrow three-dimensional spaces in the body, identifying a propulsion system based on water and charged particles. The finding uncovers a novel method the deadly cells use to migrate through a cancer patient's body. The discovery may lead to new treatments that help keep the disease in check. The work also points to the growing importance of studying how cells behave in three dimensions, not just atop flat two-dimensional lab dishes.

An illustration of a newly discovered method cancer cells use to spread around the body.
Credit: Martin Rietveld/JHU

Johns Hopkins researchers have discovered a new mechanism that explains how cancer cells spread through extremely narrow three-dimensional spaces in the body by using a propulsion system based on water and charged particles.

The finding, reported in the April 24 issue of the journal Cell, uncovers a novel method the deadly cells use to migrate through a cancer patient's body. The discovery may lead to new treatments that help keep the disease in check. The work also points to the growing importance of studying how cells behave in three dimensions, not just atop flat two-dimensional lab dishes.

Based on such lab dish studies, cancer researchers had concluded that tumor cells require actin and other proteins to form arm-like extensions to "crawl" across the flat surfaces. This type of travel was believed to be the primary means of how cancer spreads within a patient, a process called metastasis. Based on this conclusion, researchers have been working on ways to disable actin and its molecular helpers, hoping this can keep cancer from spreading.

But in a study published in 2012, a Johns Hopkins team led by Konstantinos Konstantopoulos, chair of the Department of Chemical and Biomolecular Engineering, found that tumor cells could move through narrow spaces without using actin and its biochemical partners.

"That was a stunning discovery, not in line with the prevailing beliefs about how cells migrate," Konstantopoulos said. "So we wanted to figure out exactly how the tumor cells were able to move through these spaces without relying on actin."

He collaborated with Sean X. Sun, a Johns Hopkins associate professor of mechanical engineering with experience in math modeling and physics at microscopic levels.

"The mystery we needed to solve," Sun said, "was how the cells in these confined spaces could still move when you took away their usual 'engine,' the actin."

Kostantopoulos said Sun and Hongyuan Jiang, a postdoctoral fellow working in Sun's lab, "came up with a phenomenal mathematical model that provided insights into how the cells might use a different system to travel." Then Konstantopoulos and other team members, including Kimberly Stroka, a postdoctoral fellow in his own lab, used a microfluidic lab-on-a-chip and imaging techniques to conduct experiments establishing the new mechanism of migration proposed by Sun and Jiang's model. The tests utilized human and animal cancer cells. Stroka and Jiang were designated co-lead authors of the resulting journal article.

As reported in the article, the tumor cells' new "engine" turned out to be a combination of sodium-hydrogen ions, cell membrane proteins called aquaporins, and water. The researchers found that within tight spaces, cancer cells create a flow of liquid that takes in water and ions at a cell's leading edge and pumps them out the trailing edge, propelling the cell forward. In the actin-dependent migration model, the cell is pushed forward by the biochemical equivalent of a boat engine. The water-based mechanism, the researchers said, more closely resembles the way a sailboat is thrust ahead by gusts of wind. The team called this mechanism the Osmotic Engine Model.

"This discovery is important because it reveals one reason why some diseases like cancer don't always respond to certain treatments," Konstantopoulos said. Sun added, "It's because these diseases have redundant mechanisms -- more than one method -- for migrating through the body."

The Johns Hopkins researchers are applying for funds to conduct further research into physical and biological aspects of the Osmotic Engine Model. Their hope is that the work will uncover a way to shut down this biochemical engine and keep it from spreading tumor cells.


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Journal Reference:

  1. KimberlyM. Stroka, Hongyuan Jiang, Shih-Hsun Chen, Ziqiu Tong, Denis Wirtz, SeanX. Sun, Konstantinos Konstantopoulos. Water Permeation Drives Tumor Cell Migration in Confined Microenvironments. Cell, 2014; 157 (3): 611 DOI: 10.1016/j.cell.2014.02.052

Cite This Page:

Johns Hopkins University. "Water-based 'engine' propels tumor cells through tight spaces in body." ScienceDaily. ScienceDaily, 30 April 2014. <www.sciencedaily.com/releases/2014/04/140430121000.htm>.
Johns Hopkins University. (2014, April 30). Water-based 'engine' propels tumor cells through tight spaces in body. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2014/04/140430121000.htm
Johns Hopkins University. "Water-based 'engine' propels tumor cells through tight spaces in body." ScienceDaily. www.sciencedaily.com/releases/2014/04/140430121000.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins