Featured Research

from universities, journals, and other organizations

New method reveals single protein interaction key to embryonic stem cell differentiation

Date:
June 5, 2014
Source:
University of Chicago Medical Center
Summary:
A new method to simplify the study of protein networks has been pioneered by researchers. Through the use of synthetic proteins, they revealed a key interaction that regulates the ability of embryonic stem cells to change into other cell types. "Our work suggests that the apparent complexity of protein networks is deceiving, and that a circuit involving a small number of proteins might control each cellular function," said the senior author.

Directed Network Wiring, a new method to simplify the study of protein networks, is illustrated.
Credit: Shohei Koide/University of Chicago

Proteins are responsible for the vast majority of the cellular functions that shape life, but like guests at a crowded dinner party, they interact transiently and in complex networks, making it difficult to determine which specific interactions are most important.

Now, researchers from the University of Chicago have pioneered a new technique to simplify the study of protein networks and identify the importance of individual protein interactions. By designing synthetic proteins that can only interact with a pre-determined partner, and introducing them into cells, the team revealed a key interaction that regulates the ability of embryonic stem cells to change into other cell types. They describe their findings June 5 in Molecular Cell.

"Our work suggests that the apparent complexity of protein networks is deceiving, and that a circuit involving a small number of proteins might control each cellular function," said senior author Shohei Koide, PhD, professor of biochemistry & molecular biophysics at the University of Chicago.

For a cell to perform biological functions and respond to the environment, proteins must interact with one another in immensely complex networks, which when diagrammed can resemble a subway map out of a nightmare. These networks have traditionally been studied by removing a protein of interest through genetic engineering and observing whether the removal destroys the function of interest or not. However, this does not provide information on the importance of specific protein-to-protein interactions.

To approach this challenge, Koide and his team pioneered a new technique that they dub "directed network wiring." Studying mouse embryonic stem cells, they removed Grb2, a protein essential to the ability of the stem cell to transform into other cell types, from the cells. The researchers then designed synthetic versions of Grb2 that could only interact with one protein from a pool of dozens that normal Grb2 is known to network with. The team then introduced these synthetic proteins back into the cell to see which specific interactions would restore the stem cell's transformative abilities.

"The name, 'directed network wiring,' comes from the fact that we create minimalist networks," Koide said. "We first remove all communication lines associated with a protein of interest and add back a single line. It is analysis by addition."

Despite the complexity of the protein network associated with stem cell development, the team discovered that restoring only one interaction -- between Grb2 and a protein known as Ptpn11/Shp2 phosphatase -- was enough to allow stem cells to again change into other cell types.

"We were really surprised to find that consolidating many interactions down to a single particular connection for the protein was sufficient to support development of the cells to the next stage, which involves many complicated processes," Koide said. "Our results show that signals travel discrete and simple routes in the cell."

Koide and his team are now working on streamlining directed network wiring and applying it to other areas of study such as cancer. With the ability to dramatically simplify how scientists study protein interaction networks, they hope to open the door to new research areas and therapeutic approaches.

"We can now design synthetic proteins that are far more sophisticated than natural ones, and use such super-performance proteins toward advancing science and medicine," he said.


Story Source:

The above story is based on materials provided by University of Chicago Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shohei Koide, PhD et al. Directed network wiring identifies a key protein interaction in embryonic stem cell differentiation. Molecular Cell, June 2014

Cite This Page:

University of Chicago Medical Center. "New method reveals single protein interaction key to embryonic stem cell differentiation." ScienceDaily. ScienceDaily, 5 June 2014. <www.sciencedaily.com/releases/2014/06/140605140005.htm>.
University of Chicago Medical Center. (2014, June 5). New method reveals single protein interaction key to embryonic stem cell differentiation. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2014/06/140605140005.htm
University of Chicago Medical Center. "New method reveals single protein interaction key to embryonic stem cell differentiation." ScienceDaily. www.sciencedaily.com/releases/2014/06/140605140005.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins