Featured Research

from universities, journals, and other organizations

Worm virus details come to light

Date:
August 18, 2014
Source:
Rice University
Summary:
The structure of the first virus known to naturally infect nematodes has been described by researchers. The research will help scientists study how viruses interact with their nematode hosts. It may also allow them to customize the virus to attack parasitic or pathogenic worms. The research may also lead to new information about how viruses attack other species, including humans, which have thousands of genes that are identical to those found in nematodes.

Rice University researchers have determined the crystal structure of the Orsay virus known to infect at least one type of nematode. The structure of the viral shell known as a capsid, seen in a computer model, will help scientists understand how such viruses infect their targets.
Credit: Tao Laboratory/Rice University

Rice University scientists have won a race to find the crystal structure of the first virus known to infect the most abundant animal on Earth.

Related Articles


The Rice labs of structural biologist Yizhi Jane Tao and geneticist Weiwei Zhong, with help from researchers at Baylor College of Medicine and Washington University, analyzed the Orsay virus that naturally infects a certain type of nematode, the worms that make up 80 percent of the living animal population.

The research reported today in the Proceedings of the National Academy of Sciences will help scientists study how viruses interact with their nematode hosts. It may also allow them to customize the virus to attack parasitic or pathogenic worms. The research may also lead to new information about how viruses attack other species, including humans, which have thousands of genes that are identical to those found in nematodes.

Tao's lab specializes in X-ray crystallography, through which scientists determine the atom-by-atom structures of viruses, proteins and other macromolecules. Once a virus' structure is identified, biologists can look for binding sites that allow the virus to attach to its target. Scientists can then search for ways to modify the sites through genetic engineering or design drugs to block viruses.

Zhong, who studies gene networks in Caenorhabditis elegans to trace signal pathways common to all animals, said she'd been looking for this opportunity for some time. "We had talked before 2011 about the fact that there were no known viruses that affect nematodes," Tao confirmed. "Then in 2011, there it was."

Zhong then asked Marie-Anne Fιlix and co-author David Wang, who discovered the infected worm in an apple orchard in France, for a sample of the virus. At that time, the Rice researchers learned others were also working to find the structure.

Tao's lab began by synthesizing the Orsay capsid protein and then coaxed the proteins to self-assemble into structures that were identical to the full virus. A comparison of these structures with electron microscope images of the actual virus confirmed their success.

"We got the crystals in May after three months of molecular cloning, expression and purification of the proteins," said lead author Yusong Guo, a graduate student co-mentored by Tao and Zhong. "Then we spent about a year-and-a-half to actually solve the structure as fast and accurately as possible, knowing that other groups were competing with us."

Their efforts led to a detailed structural model of the viral capsid, the hard, spiky shell that protects the infectious contents as the virus searches for and then attaches to a host cell.

Guo's structure showed the Orsay capsid consists of 180 copies of the capsid protein, each contributing to one of 60 spikes that adorn the shell. Tao said the capsid structure revealed surprising similarity to a group of fish-infecting viruses called nodaviruses. The researchers also observed similarities in the part of the protein that forms the spikes to the hepatitis E virus and calicivirus, suggesting possible evolutionary relationships between them.

They also found they could destabilize the virus by modifying one end -- the N-terminal arm -- of the capsid protein.

Zhong said the virus doesn't kill its host, but causes intestinal distress. "That's actually a sign that these two species (the worm and the virus) have been coevolving for a long time, because if a virus kills its host, they're not going to coexist for long," she said. "The worm and the virus thus make a good model system to study host-virus interactions."

The capsid spike structure is important, Tao said, because "it likely interacts with the host cell receptors. Now that we know this domain, we can specifically change it so that maybe, instead of targeting this worm, it will target a different species of worm."

Two other viruses have since been found to infect a different strain of nematode, but there's satisfaction in being the first to detail the first such virus discovered.

"There are 20,000 genes in C. elegans, and 8,000 of them are conserved between humans and worms," Zhong said. "How many of those genes are involved in antiviral defense? We can study that now."


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Weiwei Zhong et al. Crystal structure of a nematode-infecting virus. PNAS, August 2014 DOI: 10.1073/pnas.1407122111

Cite This Page:

Rice University. "Worm virus details come to light." ScienceDaily. ScienceDaily, 18 August 2014. <www.sciencedaily.com/releases/2014/08/140818152515.htm>.
Rice University. (2014, August 18). Worm virus details come to light. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2014/08/140818152515.htm
Rice University. "Worm virus details come to light." ScienceDaily. www.sciencedaily.com/releases/2014/08/140818152515.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Dinosaur Species Found in Museum Collection

New Dinosaur Species Found in Museum Collection

Reuters - Innovations Video Online (Nov. 27, 2014) — A British palaeontologist has discovered a new species of dinosaur while studying fossils in a Canadian museum. Pentaceratops aquilonius was related to Triceratops and lived at the end of the Cretaceous Period, around 75 million years ago. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Classic Hollywood Memorabilia Goes Under the Hammer

Classic Hollywood Memorabilia Goes Under the Hammer

Reuters - Entertainment Video Online (Nov. 26, 2014) — The iconic piano from "Casablanca" and the Cowardly Lion suit from "The Wizard of Oz" fetch millions at auction. Sara Hemrajani reports. Video provided by Reuters
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins