New! Sign up for our free email newsletter.
Science News
from research organizations

Defect in fruit fly respiratory system may provide insights into human aortic aneurysms

Date:
October 25, 2023
Source:
Universität Leipzig
Summary:
A team of researchers has gained new insights into the respiratory system of fruit flies -- the so-called tracheal system -- which could be important for future research into aneurysms. Scientists carried out genetic, cell biological and biochemical studies on Drosophila embryos. They found that the cells in the fruit fly's tracheal system are connected to the extracellular matrix by the proteins Dumpy and Piopio.
Share:
FULL STORY

A team of researchers led by Leipzig University has gained new insights into the respiratory system of fruit flies -- the so-called tracheal system -- which could be important for future research into aneurysms. Dr Matthias Behr from the Institute of Biology (Department of Cell Biology) at Leipzig University and his team, together with colleagues from the Max Planck Institute for Multidisciplinary Sciences in Göttingen, carried out genetic, cell biological and biochemical studies on Drosophila embryos. They found that the cells in the fruit fly's tracheal system are connected to the extracellular matrix by the proteins Dumpy and Piopio. They have just published their research findings in the journal eLife.

Similar to the human circulatory system or lungs, the fruit fly's tracheal system consists of a network of tubes. During the embryonic development of these insects, this network of tubes is filled with a special substance that gives them shape (an extracellular matrix), which is secreted by the surrounding cells. As the organs grow, the cells are closely connected to this extracellular matrix and "shimmy" along it to form the right shape and size of tubes.

The forces between the cells and the extracellular matrix shift during this time, for example due to strong cell growth. This could lead to deformation of the cell membranes because the overlying matrix cannot expand with them. When this happens, the protease Notopleural comes into play. This is an enzyme that cleaves proteins or peptides. The enzyme acts like a pair of scissors, cutting up the Piopio protein and breaking the cell-matrix bonds. "This trick avoids excessive tension and deformation of the cell membranes. If this does not happen, bumps and cracks form in the tube system and the fruit fly's respiratory system does not function," says Dr Matthias Behr, senior author of the study.

He explains that similar defects occur in the human circulatory system in the form of aortic aneurysms. Since the proteins that Behr and his colleagues have identified in their study in the fruit fly are also present in very similar form in humans, the mechanism described could support future research into the cause of aortic aneurysms and similar tubular diseases.


Story Source:

Materials provided by Universität Leipzig. Original written by Susann Sika. Note: Content may be edited for style and length.


Journal Reference:

  1. Leonard Drees, Susi Schneider, Dietmar Riedel, Reinhard Schuh, Matthias Behr. The proteolysis of ZP proteins is essential to control cell membrane structure and integrity of developing tracheal tubes in Drosophila. eLife, 2023; 12 DOI: 10.7554/eLife.91079

Cite This Page:

Universität Leipzig. "Defect in fruit fly respiratory system may provide insights into human aortic aneurysms." ScienceDaily. ScienceDaily, 25 October 2023. <www.sciencedaily.com/releases/2023/10/231025110628.htm>.
Universität Leipzig. (2023, October 25). Defect in fruit fly respiratory system may provide insights into human aortic aneurysms. ScienceDaily. Retrieved April 27, 2024 from www.sciencedaily.com/releases/2023/10/231025110628.htm
Universität Leipzig. "Defect in fruit fly respiratory system may provide insights into human aortic aneurysms." ScienceDaily. www.sciencedaily.com/releases/2023/10/231025110628.htm (accessed April 27, 2024).

Explore More

from ScienceDaily

RELATED STORIES