New! Sign up for our free email newsletter.
Science News
from research organizations

Researchers Create New Organic Gel Nanomaterials

Date:
June 29, 2006
Source:
Rensselaer Polytechnic Institute
Summary:
Researchers have created organic gel nanomaterials that could be used to encapsulate pharmaceutical, food, and cosmetic products and to build 3-D biological scaffolds for tissue engineering. Using olive oil and six other liquid solvents, the scientists added a simple enzyme to chemically activate a sugar that changed the liquids to organic gels.
Share:
FULL STORY

Researchers have created organic gel nanomaterials that could be used to encapsulate pharmaceutical, food, and cosmetic products and to build 3-D biological scaffolds for tissue engineering. Using olive oil and six other liquid solvents, the scientists added a simple enzyme to chemically activate a sugar that changed the liquids to organic gels.

“We are using the building blocks provided by nature to create new nanomaterials that are completely reversible and environmentally benign,” said Jonathan Dordick, the Howard P. Isermann ‘42 Professor of Chemical and Biological Engineering at Rensselaer Polytechnic Institute. “The importance of this finding is the ability to use the same naturally occurring enzyme both to create chemically functional organogels and to reverse the process and break down these gels into their biologically compatible building blocks.”

In the experiments, researchers activated a sugar using a simple enzyme, which generated a compound that self-assembles into 3-D fibers measuring approximately 50 nanometers in diameter. As the fibers entangle, a large amount of solvent gets packed together, trapping some 10,000 molecules.

The resulting organogel materials could be used as biocompatible scaffolds for tissue engineering and designing membranes, according to Dordick. Other possible applications include delivery systems for pharmaceuticals and preservatives for food and cosmetics.

“The development of new materials that are molecularly defined and chemically functional at the nanoscale is of critical importance to biological applications such as drug delivery,” said Dordick. “We are finding the natural world has provided tools to create these materials without the need to generate new compounds that may be harmful to the body or environment.”

The findings are currently available online in advance of print publication July 17 by the journal Angewandte Chemie.

Dordick’s research involves using enzyme technology to produce unique chemical structures with applications in drug discovery, materials science, and chemical technology.

The research is led by Dordick and includes George John of the City University of New York; Guangyu Zhu, post-doctoral research associate at Rensselaer; and Jun Li of the University of Southern Mississippi. The paper is titled “Enzymatically Derived Sugar-Containing Self-Assembled Organogels with Nanostructured Morphologies.”

The funding for this research was provided by the National Science Foundation-funded Nanoscale Science and Engineering Center (NSEC) at Rensselaer, the Center for Directed Assembly of Nanostructures.


Story Source:

Materials provided by Rensselaer Polytechnic Institute. Note: Content may be edited for style and length.


Cite This Page:

Rensselaer Polytechnic Institute. "Researchers Create New Organic Gel Nanomaterials." ScienceDaily. ScienceDaily, 29 June 2006. <www.sciencedaily.com/releases/2006/06/060629084624.htm>.
Rensselaer Polytechnic Institute. (2006, June 29). Researchers Create New Organic Gel Nanomaterials. ScienceDaily. Retrieved November 9, 2024 from www.sciencedaily.com/releases/2006/06/060629084624.htm
Rensselaer Polytechnic Institute. "Researchers Create New Organic Gel Nanomaterials." ScienceDaily. www.sciencedaily.com/releases/2006/06/060629084624.htm (accessed November 9, 2024).

Explore More

from ScienceDaily

RELATED STORIES