New! Sign up for our free email newsletter.
Science News
from research organizations

Sniffing Out A Broad-spectrum Of Airborne Threats In Seconds

Date:
June 10, 2008
Source:
DOE/Lawrence Livermore National Laboratory
Summary:
Scientists are reporting successful laboratory and field tests of a new device that can sniff out the faintest traces of a wide range of chemical, biological, nuclear, and explosive threats - and illicit drugs - from the air in minutes with great accuracy. The ultra-sensitive detector, known as the single-particle aerosol mass spectrometry (SPAMS) system, could tighten security at airports, sports stadiums and other large-scale facilities.
Share:
FULL STORY

Security and law enforcement officials may some day have a new ally - a universal detection system that can monitor the air for virtually all of the major threat agents that could be used by terrorists.

This type of system is under development by a team of Lawrence Livermore National Laboratory (LLNL) scientists and engineers, and has already been tested in laboratory and field experiments.

In their latest advance, the team has conceptually shown that they can almost simultaneously detect four potential threat materials - biological, chemical, explosives and radiological - along with illicit drugs.

Their work, using a system called Single-Particle Aerosol Mass Spectrometry, or SPAMS, is described in Analytical Chemistry.

"We believe SPAMS is the only detection instrument that can autonomously detect multiple types of threat agents and trigger alarms within less than a minute," said Matthias Frank, an LLNL physicist and one of the paper's co-authors.

"What sets this work apart," Frank explained, "is that we did our experiments with all these types of threat agents within minutes of each other without reconfiguring the SPAMS instrument." (In some cases, surrogate materials were used.)

Last spring, the researchers announced that their instrument could perform as a three-in-one detection machine, monitoring the air for biological, chemical and explosive agents.

Since then, the Livermore team has added the capabilities of detecting illicit drugs and powders from radioactive metals. They developed the software capability to assist in detecting metal powders and the algorithms to help detect all four threat agents at one time.

The paper's lead author, LLNL physicist Paul Steele, notes that three factors are particularly important in developing a detection machine like SPAMS: sensitivity, false alarm rate and response time.

"What we have accomplished," Steele said, "is to make an instrument that is very sensitive, with a very low false alarm rate, but very fast. That's unique. Other systems that are just as fast and sensitive have higher false alarm rates."

Besides Frank and Steele, other researchers on the SPAMS team include chemists Eric Gard, David Fergenson, Keith Coffee and George Farquar; forensic chemist and graduate student Audrey Martin; microbiologist Sue Martin; and electronics engineer Vincent Riot.

In lab experiments, SPAMS was tested against four types of materials terrorists might use -- spores of a non-pathogenic strain of Bacillus anthracis (other strains of this bacteria cause anthrax); diethyl phthalate (a nerve agent surrogate), natural cobalt powder (a surrogate for Cobalt 60 and other radioactive metals) and trinitro-1,3,5-triazinane (RDX, a high explosive). Additionally, it was tested against pseudoephedrine (used to synthesize methamphetamine).

In single- and multiple-agent tests, SPAMS accurately identified each substance and set off the correct alarms within an average of 34 seconds after their release against a background of air as the system was open to the environment. All of the measurements were achieved within 26 to 46 seconds after the compounds' release.

The two multiple-agent tests involved the use of natural cobalt powder and RDX, and a non-pathogenic strain of Bacillus anthracis and RDX.

In field experiments, SPAMS has been tested at San Francisco International Airport. As part of a background study, the mass spectrometry system analyzed the air for about seven weeks in 2004-05, recording data, though it lacked the capability to set off alarms. The system records were later analyzed in the lab to evaluate whether any alarms, false or real, would have been triggered.

The researchers determined that while a few particles showed up as spores among the almost one million particles studied, there were so few that no alarms would have been triggered.

"What distinguishes SPAMS from other instruments is the high-quality information we receive from the instrument in the form of single-particle mass spectra," Frank said. "As a result, we get specificity and many fewer false alarms. We're very enthusiastic about how the system is working, not only in the lab but also in field tests."

For the future, the Livermore team would like to develop ways to make the SPAMS machine smaller and less expensive.

They would like to find opportunities for additional field tests, such as at airports, where SPAMS could be used to screen checked and carry-on baggage and at passenger portals. The instrument also could assist in screening people for disease and might help law enforcement authorities in examining suspicious powder samples.

Research funds to develop or field test SPAMS have been provided by the Defense Advanced Research Projects Agency and the Technical Support Working Group, both within the U.S. Department of Defense, as well as the U.S. Department of Homeland Security.


Story Source:

Materials provided by DOE/Lawrence Livermore National Laboratory. Note: Content may be edited for style and length.


Journal Reference:

  1. Steele et al. Autonomous, Broad-Spectrum Detection of Hazardous Aerosols in Seconds. Analytical Chemistry, 2008; 0 (0): 0 DOI: 10.1021/ac8004428

Cite This Page:

DOE/Lawrence Livermore National Laboratory. "Sniffing Out A Broad-spectrum Of Airborne Threats In Seconds." ScienceDaily. ScienceDaily, 10 June 2008. <www.sciencedaily.com/releases/2008/06/080609092056.htm>.
DOE/Lawrence Livermore National Laboratory. (2008, June 10). Sniffing Out A Broad-spectrum Of Airborne Threats In Seconds. ScienceDaily. Retrieved March 29, 2024 from www.sciencedaily.com/releases/2008/06/080609092056.htm
DOE/Lawrence Livermore National Laboratory. "Sniffing Out A Broad-spectrum Of Airborne Threats In Seconds." ScienceDaily. www.sciencedaily.com/releases/2008/06/080609092056.htm (accessed March 29, 2024).

Explore More

from ScienceDaily

RELATED STORIES