New! Sign up for our free email newsletter.
Science News
from research organizations

First Beam For Large Hadron Collider

Date:
September 10, 2008
Source:
DOE/Brookhaven National Laboratory
Summary:
An international collaboration of scientists today sent the first beam of protons zooming at nearly the speed of light around the world's most powerful particle accelerator -- the Large Hadron Collider (LHC) -- located at the CERN laboratory near Geneva, Switzerland. Scientists believe the LHC could help unlock extraordinary discoveries about the nature of the physical universe.
Share:
FULL STORY

An international collaboration of scientists today sent the first beam of protons zooming at nearly the speed of light around the world’s most powerful particle accelerator—the Large Hadron Collider (LHC)—located at the CERN laboratory near Geneva, Switzerland. The U.S. Department of Energy (DOE) and the National Science Foundation (NSF) invested a total $531 million in the construction of the accelerator and its detectors, which scientists believe could help unlock extraordinary discoveries about the nature of the physical universe.

Celebrations across the U.S. and around the world mark the LHC’s first circulating beam, an occasion more than 15 years in the making. An estimated 10,000 people from 60 countries have helped design and build the accelerator and its massive particle detectors, including more than 1,700 scientists, engineers, students and technicians from 94 U.S. universities and laboratories supported by DOE’s Office of Science and NSF.

“As the largest and most powerful particle accelerator on Earth, the LHC represents a monumental technical achievement,” said U.S. Department of Energy Undersecretary for Science Raymond L. Orbach. “I congratulate the world's scientists and engineers who have made contributions to the construction of the accelerator for reaching this milestone. We now eagerly await the results that will emerge from operation of this extraordinary machine.”

The first circulating beam is a major accomplishment on the way to the ultimate goal: high-energy beams colliding in the centers of the LHC’s particle detectors. Beyond revealing a new world of unknown particles, the LHC experiments could explain why those particles exist and behave as they do. They could reveal the origins of mass, shed light on dark matter, uncover hidden symmetries of the universe and possibly find extra dimensions of space.

NSF has focused its support on funding university scientists who have contributed to the design and construction of the two largest detectors, CMS and ATLAS, and promoted the development of advanced computing innovations, essential to address the challenges posed by the enormity and richness of data to be accumulated. Continued support will enable scientists to optimize detector performance, successful data accumulation and sophisticated analysis, necessary for discovery.

“This national and international collaboration of unprecedented scope, and our investment in basic science, fundamental to the NSF mission, provide an exciting opportunity to solve some of the core mysteries of the universe,” said Arden L. Bement, Jr., director of the NSF. “With the operation of the LHC, anticipation of transformative scientific discoveries soars to new heights.”

DOE provided support for the design and construction of the ATLAS and CMS detectors through two DOE national laboratories—Brookhaven National Laboratory in New York and Fermi National Accelerator Laboratory (Fermilab) in Illinois. While the construction was managed through Fermilab and Brookhaven, scientists and engineers at universities and other DOE national laboratories—Argonne National Laboratory in Illinois and Lawrence Berkeley National Laboratory (Berkeley Lab) in California—played key roles in the design and construction and are finalizing preparations to collect and analyze the data at the energy frontier. In addition, DOE supported about 150 scientists, engineers and technicians from three DOE national laboratories—Brookhaven, Fermilab and Berkeley Lab—that built critical components for the LHC accelerator. They are joined by colleagues from DOE’s Stanford Linear Accelerator Center and Texas A&M University in ongoing accelerator R&D.

“The LHC is a discovery machine,” said CERN Director General Robert Aymar, “its research programme has the potential to change our view of the Universe profoundly, continuing a tradition of human curiosity that’s as old as mankind itself.”


Story Source:

Materials provided by DOE/Brookhaven National Laboratory. Note: Content may be edited for style and length.


Cite This Page:

DOE/Brookhaven National Laboratory. "First Beam For Large Hadron Collider." ScienceDaily. ScienceDaily, 10 September 2008. <www.sciencedaily.com/releases/2008/09/080910091627.htm>.
DOE/Brookhaven National Laboratory. (2008, September 10). First Beam For Large Hadron Collider. ScienceDaily. Retrieved September 20, 2024 from www.sciencedaily.com/releases/2008/09/080910091627.htm
DOE/Brookhaven National Laboratory. "First Beam For Large Hadron Collider." ScienceDaily. www.sciencedaily.com/releases/2008/09/080910091627.htm (accessed September 20, 2024).

Explore More

from ScienceDaily

RELATED STORIES