New! Sign up for our free email newsletter.
Science News
from research organizations

New material mimics bone to create better biomedical implants

Date:
February 21, 2010
Source:
North Carolina State University
Summary:
A "metal foam" that has a similar elasticity to bone could mean a new generation of biomedical implants that would avoid bone rejection that often results from more rigid implant materials, such as titanium. Researchers have developed the metal foam, which is even lighter than solid aluminum and can be made of 100 percent steel or a combination of steel and aluminum.
Share:
FULL STORY

A "metal foam" that has a similar elasticity to bone could mean a new generation of biomedical implants that would avoid bone rejection that often results from more rigid implant materials, such as titanium. Researchers at North Carolina State University have developed the metal foam, which is even lighter than solid aluminum and can be made of 100 percent steel or a combination of steel and aluminum.

In a new paper, researchers have reported recent findings that, in addition to the extraordinary high-energy absorption capability and light weight of their novel composite foams, the "modulus of elasticity" of the foam is very similar to that of bone. Modulus of elasticity measures a material's ability to deform when pressure is applied and then return to its original shape when pressure is removed. The rough surface of the foam would also foster bone growth into the implant, improving the strength of implant.

Modulus of elasticity, which is measured in gigapascals (GPa), is extremely important for biomedical implants, explains Dr. Afsaneh Rabiei, an associate professor of mechanical and aerospace engineering and an associate faculty member of biomedical engineering at NC State and co-author of the paper.

"When an orthopedic or dental implant is placed in the body to replace a bone or a part of a bone, it needs to handle the loads in the same way as its surrounding bone," Rabiei says. "If the modulus of elasticity of the implant is too much bigger than the bone, the implant will take over the load bearing and the surrounding bone will start to die. This will cause the loosening of the implant and eventually ends in failure. This is known as "'stress shielding.'" When this happens, the patient will need a revision surgery to replace the implant. Our composite foam can be a perfect match as an implant to prevent stress shielding," Rabiei explains.

To give an idea of the difference between the modulus of elasticity of bone and that of traditional implants, bone has a modulus of between 10 and 30 GPa -- while titanium has a modulus of approximately 100 GPa. The new composite foam has a modulus that is consistent with bone, and is also relatively light because it is porous.

The rough surface of the metal foam, Rabiei says, "will bond well with the new bone formed around it and let the body build inside its surface porosities. This will increase the mechanical stability and strength of the implant inside the body."

The research was funded by the National Science Foundation and will be published in the March issue of Materials Science and Engineering A. The research was co-authored by Rabiei and former NC State Ph.D. student L. Vendra.


Story Source:

Materials provided by North Carolina State University. Note: Content may be edited for style and length.


Journal Reference:

  1. Vendra et al. Evaluation of modulus of elasticity of composite metal foams by experimental and numerical techniques. Materials Science and Engineering A, 2010; 527 (7-8): 1784 DOI: 10.1016/j.msea.2009.11.004

Cite This Page:

North Carolina State University. "New material mimics bone to create better biomedical implants." ScienceDaily. ScienceDaily, 21 February 2010. <www.sciencedaily.com/releases/2010/02/100216113603.htm>.
North Carolina State University. (2010, February 21). New material mimics bone to create better biomedical implants. ScienceDaily. Retrieved April 24, 2024 from www.sciencedaily.com/releases/2010/02/100216113603.htm
North Carolina State University. "New material mimics bone to create better biomedical implants." ScienceDaily. www.sciencedaily.com/releases/2010/02/100216113603.htm (accessed April 24, 2024).

Explore More

from ScienceDaily

RELATED STORIES