New! Sign up for our free email newsletter.
Science News
from research organizations

DNA engine observed in real-time traveling along base pair track

Date:
February 7, 2011
Source:
Institute for Integrated Cell-Material Sciences, Kyoto University
Summary:
In a complex feat of nanoengineering, a team of scientists has succeeded in creating a programmable molecular transport system, the workings of which can be observed in real time. The results open the door to the development of advanced drug delivery methods and molecular manufacturing systems.
Share:
FULL STORY

In a complex feat of nanoengineering, a team of scientists at Kyoto University and the University of Oxford have succeeded in creating a programable molecular transport system, the workings of which can be observed in real time. The results, appearing in the latest issue of Nature Nanotechnology, open the door to the development of advanced drug delivery methods and molecular manufacturing systems.

Resembling a monorail train, the system relies on the self-assembly properties of DNA origami and consists of a 100 nm track together with a motor and fuel. Using atomic force microscopy (AFM), the research team was able to observe in real time as this motor traveled the full length of the track at a constant average speed of around 0.1 nm/s.

"The track and motor interact to generate forward motion in the motor," explained Dr. Masayuki Endo of Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS). "By varying the distance between the rail 'ties,' for example, we can adjust the speed of this motion."

The research team, including lead author Dr. Shelley Wickham at Oxford, anticipates that these results will have broad implications for future development of programable molecular assembly lines leading to the creation of synthetic ribosomes.

"DNA origami techniques allow us to build nano- and meso-sized structures with great precision," elaborated iCeMS Prof. Hiroshi Sugiyama. "We already envision more complex track geometries of greater length and even including junctions. Autonomous, molecular manufacturing robots are a possible outcome."

The article was published online in the February 6, 2011 issue of Nature Nanotechnology.

Funding for this research was provided by the Engineering and Physical Sciences Research Council (EP/G037930/1), the Clarendon Fund, the Oxford-Australia Scholarship Fund, the CREST program of the Japan Science and Technology Agency (JST), and the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT).


Story Source:

Materials provided by Institute for Integrated Cell-Material Sciences, Kyoto University. Note: Content may be edited for style and length.


Journal Reference:

  1. Shelley F. J. Wickham, Masayuki Endo, Yousuke Katsuda, Kumi Hidaka, Jonathan Bath, Hiroshi Sugiyama, Andrew J. Turberfield. Direct observation of stepwise movement of a synthetic molecular transporter. Nature Nanotechnology, 2011; DOI: 10.1038/nnano.2010.284

Cite This Page:

Institute for Integrated Cell-Material Sciences, Kyoto University. "DNA engine observed in real-time traveling along base pair track." ScienceDaily. ScienceDaily, 7 February 2011. <www.sciencedaily.com/releases/2011/02/110206132857.htm>.
Institute for Integrated Cell-Material Sciences, Kyoto University. (2011, February 7). DNA engine observed in real-time traveling along base pair track. ScienceDaily. Retrieved September 13, 2024 from www.sciencedaily.com/releases/2011/02/110206132857.htm
Institute for Integrated Cell-Material Sciences, Kyoto University. "DNA engine observed in real-time traveling along base pair track." ScienceDaily. www.sciencedaily.com/releases/2011/02/110206132857.htm (accessed September 13, 2024).

Explore More

from ScienceDaily

RELATED STORIES