New! Sign up for our free email newsletter.
Science News
from research organizations

Improving detection of radioactive material in nuclear waste water

Date:
November 13, 2013
Source:
American Chemical Society
Summary:
As the Fukushima crisis continues to remind the world of the potential dangers of nuclear disposal and unforeseen accidents, scientists are reporting progress toward a new way to detect the radioactive materials uranium and plutonium in waste water.
Share:
FULL STORY

As the Fukushima crisis continues to remind the world of the potential dangers of nuclear disposal and unforeseen accidents, scientists are reporting progress toward a new way to detect the radioactive materials uranium and plutonium in waste water. Their report on the design of a highly sensitive nanosensor appears in ACS' The Journal of Physical Chemistry C.

Jorge M. Seminario and Narendra Kumar note that it is highly likely that radioactive uranium and plutonium have leaked into the soil and groundwater near nuclear facilities. This contamination poses a serious threat to the environment and human health. Although detecting these materials even at low levels is important for determining whether a leak is occurring, traditional methods of doing so are not effective. But recently, scientists have discovered that radioactive materials in water can clump onto flakes of graphene oxide (GO). Based on theoretical models and calculations, researchers predicted that GO could sense and identify extremely low levels -- single molecules -- of various substances. Seminario's team set out to see how best to adapt this for uranium and plutonium sensing.

Using the latest advances in supercomputing, they modeled several different variations of GO to figure out which one would be the most sensitive and selective in detecting uranium and plutonium in nuclear waste water. They concluded that attaching something called a carbonyl functional group to GO would serve as an effective nanosensor for these radioactive materials.

The authors acknowledge funding from the Argonne National Laboratory, the U.S. Defense Threat Reduction Agency and the U.S. Army Research Office.


Story Source:

Materials provided by American Chemical Society. Note: Content may be edited for style and length.


Journal Reference:

  1. Narendra Kumar, Jorge M. Seminario. Design of Nanosensors for Fissile Materials in Nuclear Waste Water. The Journal of Physical Chemistry C, 2013; 131031110254005 DOI: 10.1021/jp408247n

Cite This Page:

American Chemical Society. "Improving detection of radioactive material in nuclear waste water." ScienceDaily. ScienceDaily, 13 November 2013. <www.sciencedaily.com/releases/2013/11/131113130153.htm>.
American Chemical Society. (2013, November 13). Improving detection of radioactive material in nuclear waste water. ScienceDaily. Retrieved March 18, 2024 from www.sciencedaily.com/releases/2013/11/131113130153.htm
American Chemical Society. "Improving detection of radioactive material in nuclear waste water." ScienceDaily. www.sciencedaily.com/releases/2013/11/131113130153.htm (accessed March 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES