New! Sign up for our free email newsletter.
Science News
from research organizations

Breath of hope for pulmonary hypertension patients

Date:
February 27, 2014
Source:
Yale University
Summary:
Most of us draw roughly 25,000 breaths a day without any thought. But for patients with pulmonary hypertension, a life-threatening increase in blood pressure in the lungs, even the smallest task can leave them gasping for air. A new study offers insight into the function of cells linked to this incurable and often fatal illness.
Share:
FULL STORY

Most of us draw roughly 25,000 breaths a day without any thought. But for patients with pulmonary hypertension, a life-threatening increase in blood pressure in the lungs, even the smallest task can leave them gasping for air. A new study by researchers at Yale School of Medicine offers insight into the function of cells linked to this incurable and often fatal illness.

Published Feb. 27 in Cell Reports, the study is the first to explore the cellular mechanisms behind the changes in the way cells are organized in pulmonary arteries in pulmonary hypertension, which leaves patients short of breath and fatigued, and ultimately results in heart failure and death. Almost half of patients die within three years of diagnosis.

Up until now, these mechanisms were not well understood, leaving clinicians with little guidance on how to prevent or reverse them. Scientists believe the fate of these patients could be improved if treatments were designed to address the abnormal changes in the pulmonary artery structure.

"For the first time, we understand which cells are responsible and the cellular processes underlying their recruitment," said senior author Daniel Greif, M.D., assistant professor of internal medicine (cardiology), who conducted the study with Yale colleagues Abdul Sheikh and Janet Lighthouse. "We looked at the mechanism involved in how these cells migrate along blood vessels."

Excess smooth muscle accumulation is a key component of pulmonary hypertension and other vascular disorders such as atherosclerosis. Vascular structures in the lung have patterns reminiscent of tree branches, and the smallest blood vessels normally lack a muscular coating; however, in pulmonary hypertension they become muscularized.

Greif and colleagues used genetic tools to map the fate of smooth muscle cells in mice with pulmonary hypertension. They focused on specific small vessels and determined that the smooth muscle coating comes from smooth muscle cells of larger vessels. "We also discovered the process by which smooth muscle cells differentiate, migrate to small blood vessels, and then re-differentiate, thereby muscularizing vessels that normally lack a smooth muscle cell coating," said Greif.

"Now that the culprit cell population in pulmonary hypertension is identified, we can turn our attention to tailoring therapies to target these cell," he added.


Story Source:

Materials provided by Yale University. Note: Content may be edited for style and length.


Journal Reference:

  1. Abdul Q. Sheikh, Janet K. Lighthouse, Daniel M. Greif. Recapitulation of Developing Artery Muscularization in Pulmonary Hypertension. Cell Reports, 2014; DOI: 10.1016/j.celrep.2014.01.042

Cite This Page:

Yale University. "Breath of hope for pulmonary hypertension patients." ScienceDaily. ScienceDaily, 27 February 2014. <www.sciencedaily.com/releases/2014/02/140227125245.htm>.
Yale University. (2014, February 27). Breath of hope for pulmonary hypertension patients. ScienceDaily. Retrieved December 9, 2024 from www.sciencedaily.com/releases/2014/02/140227125245.htm
Yale University. "Breath of hope for pulmonary hypertension patients." ScienceDaily. www.sciencedaily.com/releases/2014/02/140227125245.htm (accessed December 9, 2024).

Explore More

from ScienceDaily

RELATED STORIES