New! Sign up for our free email newsletter.
Science News
from research organizations

Breakthrough in fight against antibiotic resistance: Intense light probes 'superbug' bacteria in extreme detail

Date:
June 19, 2014
Source:
Diamond Light Source
Summary:
Researchers have made a breakthrough in the race to solve antibiotic resistance. Using Diamond Light Source, one of the UK's most advanced scientific machines which produces a light 10 billion times brighter than the sun, they studied 'superbug' bacteria in extreme detail to identify an innovative method of disabling bacteria and preventing antibiotic resistance.
Share:
FULL STORY

A group from the University of East Anglia and Diamond Light Source have made a breakthrough in the race to solve antibiotic resistance. Using Diamond, one of the UK's most advanced scientific machines which produces a light 10 billion times brighter than the sun, they studied 'superbug' bacteria in extreme detail to identify an innovative method of disabling bacteria and preventing antibiotic resistance.

The discovery doesn't come a moment too soon. The World Health Organisation has warned that antibiotic-resistance in bacteria is spreading globally, with severe consequences. Even common infections, which have been treatable for decades, can once again kill. This breakthrough is a giant leap forward in the fight against superbugs.

Bacteria are able to infect their hosts because they camouflage themselves against the immune system. However, this new research, published today in the journal Nature, reveals how the bacteria construct this camouflage and opens the door to blocking the process through new classes of antibiotics.

Researchers investigated Gram-negative bacteria, which cause a vast range of infections, including e-coli, salmonella, gonorrhea, pseudomonas, and meningitis. The outer surface of a Gram-negative bacterial cell acts as a disguising "cloak" that provides a barrier against toxic compounds such as antibiotics and camouflages the invading organism to evade detection and destruction by the body's defences. Using the intense light produced by Diamond to study these bacteria at an atomic level, they were able to pinpoint the structure of the integral protein responsible for the final stage of creating the bacteria's camouflage.

By determining the shape of this protein using Diamond's synchrotron technology, the team has made it possible to design drugs that slot into the protein and stop it in its tracks, killing superbugs by simply disabling the camouflage. With this important defense barrier removed the bacteria cannot survive.

The findings are profoundly significant, because targeting the final stage of the camouflage assembly mechanism may be possible from the cell exterior, preventing the bacteria from simply pumping out the antibiotic and negating a key antibiotic resistance mechanism.

This protein is highly conserved across Gram-negative bacteria, suggesting that a wide range of bacterial pathogens could be attacked via this target. This means that in future, we may be able to take one drug to combat a vast range of infections.

Dr Neil Paterson (Diamond Light Source) collaborated on the project, providing in-house support whilst the group was using Diamond's cutting-edge facilities to pinpoint the structure of the camouflage protein. He comments:

"This is an exciting structure that fundamentally advances our understanding of basic cell assembly and at the same time provides a detailed view of an intriguing target for new classes of antibiotics. We would not have been able to determine this structure without the facilities at a synchrotron such as Diamond."

Group leader Prof Changjiang Dong, from UEA's Norwich Medical School, said: "We have identified the path and gate used by the bacteria to transport the barrier building blocks to the outer surface. Importantly, we have demonstrated that the bacteria would die if the gate is locked."

"This is really important because drug-resistant bacteria is a global health problem. Many current antibiotics are becoming useless, causing hundreds of thousands of deaths each year.

"The number of super-bugs are increasing at an unexpected rate. This research provides the platform for urgently-needed new generation drugs."

Lead author PhD student Haohao Dong said: "The really exciting thing about this research is that new drugs will specifically target the protective barrier around the bacteria, rather than the bacteria itself.

"Because new drugs will not need to enter the bacteria itself, we hope that the bacteria will not be able to develop drug resistance in future."

This research was funded by Wellcome Trust. Research collaborators included Dr Phillip Stansfield from the University of Oxford, Prof Wenjan Wang of Sun Yat-sen University (China).


Story Source:

Materials provided by Diamond Light Source. Note: Content may be edited for style and length.


Journal Reference:

  1. Haohao Dong, Quanju Xiang, Yinghong Gu, Zhongshan Wang, Neil G. Paterson, Phillip J. Stansfeld, Chuan He, Yizheng Zhang, Wenjian Wang, Changjiang Dong. Structural basis for outer membrane lipopolysaccharide insertion. Nature, 2014; DOI: 10.1038/nature13464

Cite This Page:

Diamond Light Source. "Breakthrough in fight against antibiotic resistance: Intense light probes 'superbug' bacteria in extreme detail." ScienceDaily. ScienceDaily, 19 June 2014. <www.sciencedaily.com/releases/2014/06/140619161935.htm>.
Diamond Light Source. (2014, June 19). Breakthrough in fight against antibiotic resistance: Intense light probes 'superbug' bacteria in extreme detail. ScienceDaily. Retrieved April 18, 2024 from www.sciencedaily.com/releases/2014/06/140619161935.htm
Diamond Light Source. "Breakthrough in fight against antibiotic resistance: Intense light probes 'superbug' bacteria in extreme detail." ScienceDaily. www.sciencedaily.com/releases/2014/06/140619161935.htm (accessed April 18, 2024).

Explore More

from ScienceDaily

MORE COVERAGE

RELATED STORIES