New! Sign up for our free email newsletter.
Science News
from research organizations

Important clue found for potential treatments for absence seizures

Date:
August 21, 2014
Source:
Institute for Basic Science
Summary:
A group of researchers has succeeded in revealing a principle mechanism of a neural network in the human brain, which will provide an important clue to potential treatments for absence seizures. Absence seizures are believed to be elicited by T-type calcium channels in the thalamic reticular nucleus of the brain that regulate influxes of calcium. These channels enable thalamic reticular nucleus neurons to generate burst firing, leading the neurons to enter a hyper-excited state.
Share:
FULL STORY

A group of Korean researchers have succeeded in revealing a principle mechanism of a neural network in the human brain, which will provide an important clue to potential treatments for absence seizures.

Absence seizures are believed to be elicited by T-type calcium channels in the thalamic reticular nucleus of the brain that regulate influxes of calcium. These channels enable thalamic reticular nucleus neurons to generate burst firing, leading the neurons to enter a hyper-excited state.

In order to identify the relationship between burst firing and absence seizures, the researchers conducted an experiment to induce absence seizures in mice using gene targeting techniques to delete the T-type calcium channel CaV3.3. The results showed that mice that received a complete genetic deletion of the T-type calcium channel, which in turn suppressed burst firing in the thalamic reticular nucleus, exhibited an increased frequency of absence seizures.

Moreover, the researchers observed for the first time ever that tonic firing also increased in such mice. The study was the first to discover that tonic firing plays a key role in the induction of absence seizure, which contradicts the existing hypothesis and carries significant implications for absence seizure treatment research.

The study is meaningful in respect to the fact that it calls into question the role of the T-type calcium channel in the reticular thalamus, and is expected to provide an important theoretical foundation for understanding its role in the mechanism of absence seizures, as well as developing effective treatment methods for absence epilepsy.

The findings were published online, July 28, in the journal, the Proceedings of the National Academy of Sciences of the United States of America (PNAS).


Story Source:

Materials provided by Institute for Basic Science. Note: Content may be edited for style and length.


Journal Reference:

  1. S. E. Lee, J. Lee, C. Latchoumane, B. Lee, S.-J. Oh, Z. A. Saud, C. Park, N. Sun, E. Cheong, C.-C. Chen, E.-J. Choi, C. J. Lee, H.-S. Shin. Rebound burst firing in the reticular thalamus is not essential for pharmacological absence seizures in mice. Proceedings of the National Academy of Sciences, 2014; DOI: 10.1073/pnas.1408609111

Cite This Page:

Institute for Basic Science. "Important clue found for potential treatments for absence seizures." ScienceDaily. ScienceDaily, 21 August 2014. <www.sciencedaily.com/releases/2014/08/140821090015.htm>.
Institute for Basic Science. (2014, August 21). Important clue found for potential treatments for absence seizures. ScienceDaily. Retrieved November 1, 2024 from www.sciencedaily.com/releases/2014/08/140821090015.htm
Institute for Basic Science. "Important clue found for potential treatments for absence seizures." ScienceDaily. www.sciencedaily.com/releases/2014/08/140821090015.htm (accessed November 1, 2024).

Explore More

from ScienceDaily

RELATED STORIES