Science News
from research organizations

Physicists detect 'charge instability' across all flavors of copper-based superconductors

Date:
January 15, 2015
Source:
University of Faculty of Science British Columbia
Summary:
Physicists have detected 'charge ordering' in electron-doped cuprate superconductors for the first time. Charge ordering is a ripple-like instability at the electron level that competes with superconductivity and likely suppresses the temperature at which materials demonstrate superconducting properties. Until now, researchers had only observed the phenomenon in other forms of cuprate materials.
Share:
FULL STORY

This image depicts Eduardo H. da Silva Neto and Andrea Damascelli at UBC's Quantum Matter Institute.
Credit: Credit: University of British Columbia.

University of British Columbia physicists have detected 'charge ordering' in electron-doped cuprate superconductors for the first time, according to research published today in Science.

Charge ordering is a ripple-like instability at the electron level that competes with superconductivity and likely suppresses the temperature at which materials demonstrate superconducting properties. Until now, researchers had only observed the phenomenon in other forms of cuprate materials.

"The universality of charge ordering across these very different materials shifts our perspective, and could propel future breakthroughs," says Eduardo H. da Silva Neto, a postdoctoral fellow with UBC's Quantum Matter Institute and the Max-Planck-UBC Centre for Quantum Materials, who led the experiment with former UBC researcher Riccardo Comin.

"We need to understand how charge ordering is formed in materials and ideally tune it, allowing superconductivity to occur at temperatures closer to room temperature," adds da Silva Neto.

"Our work opens up a new avenue to study charge ordering and the mysteries of superconductivity in these materials," says UBC professor Andrea Damascelli, leader of the research team. "Now we can compare and contrast characteristics that are common across both flavours of copper-based materials -- both hole- and electron-doped."

Doping involves adding impurities (electrons or 'holes') into materials in order to spur the material to exhibit unusual behaviours such as high-temperature superconductivity.

Recent superconductivity research on charge ordering in hole-doped cuprates has focused on understanding its connection to another mysterious state: the pseudogap. Most experiments suggest that the pseudogap is a necessary ingredient to charge ordering, and consequently the suppression of superconducting properties.

But the UBC research indicates that the pseudogap is not a prerequisite for charge ordering in electron-doped materials.


Story Source:

Materials provided by University of Faculty of Science British Columbia. Note: Content may be edited for style and length.


Journal Reference:

  1. E. H. da Silva Neto, R. Comin, F. He, R. Sutarto, Y. Jiang, R. L. Greene, G. A. Sawatzky, A. Damascelli. Charge ordering in the electron-doped superconductor Nd2-xCexCuO4. Science, 2015; 347 (6219): 282 DOI: 10.1126/science.1256441

Cite This Page:

University of Faculty of Science British Columbia. "Physicists detect 'charge instability' across all flavors of copper-based superconductors." ScienceDaily. ScienceDaily, 15 January 2015. <www.sciencedaily.com/releases/2015/01/150115141704.htm>.
University of Faculty of Science British Columbia. (2015, January 15). Physicists detect 'charge instability' across all flavors of copper-based superconductors. ScienceDaily. Retrieved May 24, 2017 from www.sciencedaily.com/releases/2015/01/150115141704.htm
University of Faculty of Science British Columbia. "Physicists detect 'charge instability' across all flavors of copper-based superconductors." ScienceDaily. www.sciencedaily.com/releases/2015/01/150115141704.htm (accessed May 24, 2017).

MORE COVERAGE

RELATED STORIES