New! Sign up for our free email newsletter.
Science News
from research organizations

Into thin air and back: Altitude can change gene expression?

Date:
April 7, 2015
Source:
Molecular Biology and Evolution (Oxford University Press)
Summary:
The underlying muscle physiology from a group of highland and lowland deer mice has been evaluated by researchers who found that population differences were associated with changes in the expression of in a number of genes involved in energy metabolism, muscle plasticity, vascular development and cellular stress.
Share:
FULL STORY

Life has adapted to all sorts of extreme environments on Earth, among them, animals like the deer mouse, shimmying and shivering about, and having to squeeze enough energy from the cold, thin air to fuel their bodies and survive.

Now, in a new publication in the journal Molecular Biology and Evolution, Scott, Cheviron et al., have examined the underlying muscle physiology from a group of highland and lowland deer mice. Deer mice were chosen because they exhibit the most extreme altitude range of any North American mammal, occurring below sea levels in Death Valley to more than 4,300 meters high in the mountains.

The research team took mice native to high or low altitude habitats, and after rearing the lab, measured the population differences in the mice, as well as their offspring. Many muscle physiology traits tended to show heritable differences between populations, whereas many were more plastic, changing with acclimation to a new altitude environment.

These differences were associated with changes in the expression of in a number of genes involved in energy metabolism, muscle plasticity, vascular development and cellular stress. At the intracellular level, genes that influence the proliferation of the powerhouses of the cell, mitochondria, were also more highly expressed in highland mice. Together these genetic changes resulted in increasing the oxidative capacity and blood supply to skeletal muscle, where rivers and tributaries of blood vessels and capillaries serve to enrich and energize skeletal muscle.

The results add to the growing knowledge and underlying mechanisms of fitness-related physiological performance under hypoxic conditions.


Story Source:

Materials provided by Molecular Biology and Evolution (Oxford University Press). Note: Content may be edited for style and length.


Journal Reference:

  1. G. R. Scott, T. S. Elogio, M. A. Lui, J. F. Storz, Z. A. Cheviron. Adaptive modifications of muscle phenotype in high-altitude deer mice are associated with evolved changes in gene regulation. Molecular Biology and Evolution, 2015; DOI: 10.1093/molbev/msv076

Cite This Page:

Molecular Biology and Evolution (Oxford University Press). "Into thin air and back: Altitude can change gene expression?." ScienceDaily. ScienceDaily, 7 April 2015. <www.sciencedaily.com/releases/2015/04/150407210857.htm>.
Molecular Biology and Evolution (Oxford University Press). (2015, April 7). Into thin air and back: Altitude can change gene expression?. ScienceDaily. Retrieved March 28, 2024 from www.sciencedaily.com/releases/2015/04/150407210857.htm
Molecular Biology and Evolution (Oxford University Press). "Into thin air and back: Altitude can change gene expression?." ScienceDaily. www.sciencedaily.com/releases/2015/04/150407210857.htm (accessed March 28, 2024).

Explore More

from ScienceDaily

RELATED STORIES